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Lecture — 37
Classification and Regression Trees - Part 11

Welcome to the course Business Analytics and Data Mining Modeling is Using R. So, in
the previous lecture we started our discussion on classification and regression trees. So,
we talked about two steps recursive partitioning and pruning and we started our
discussion on recursive partitioning and we also started our exercise on the same and in
the previous lecture. So, we were discussing about the possible set of split values what
could be those values and how we can compute them, how we can get an idea about

those split values using R.

So, in the previous lecture we talked about if the variable is numerical the predator is
numerical then what could be the possible set of split values. So, we talked about annual
income and also household area that sedan car dataset that we are using for this exercise.
So, we also computed midpoint values for these two variables and we talked about we
have two variables and 19 midpoint values for each of them twenty observation we have
in total. So, about 38 predictor value combination will have and out of these 38 predator
combination if the algorithm the implementation of that algorithm if it follows this
process and out of these 38 combination we will have to select one optimal one which is

going to reduce the impurity; that means, the heterogeneity.
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23 # First split 2 ciobal | nvironment = A
24 abline(h=18.8) ~ Data
25 0df 20 obs. of 3 variables [

26 # Possible set of split values |

27 # For numerical varables

28 # midpoints between pairs of consecutive values for a variable,

29 # which are ranked as per the impurity (heterogeneity) reduction
30  # in the resulting rectangular parts

31 sort(dfSAnnual_Income)

32 head(sort(df Sannual_Income),-1)+diff (sort(df Sannual_Income)/2)

33 sort(dfSHousehold_Area) Fies | Plots Packages  Help | Viewsr =0

34 head(sort(df SHousehold_area) ,-1)+diff (sort(dfSHousehold_area)/2)

35 # For categorical variables @RS A 4 head 0@

g? # set of categories is divided into wo subsets IE et the s o 1 35t bartof an Object +

38 # Gini impurity index and Entropy measure <\ Arguments

WA (lop level) 1 seript &

Console G:/Sesslon 5/ BEl |~ an object
> head(sort(dfSannual_income),-1) A o asingle integer. If positive, size for the

4.74.95.253596.06.26.26.56.56.56.87.68.18.38.58.89.4 resulting object: number of elements

> head(sort(dfSannual_income) ,-1)+diff(sort(dfSannual_income)/2) for a vector (including lists). rows fora |
[1] 4.50 4.80 5.05 5.25 5.60 5.95 6.10 6.20 6.35 6.50 6.50 6.65 7.20 matrix or data frame or lines for a i
(14] 7.85 8.20 8.40 8.65 9.10 10.10 function. If negative, all but the 9

» sort(dfSHousehold_area) last/first number of elements of .

(1] 14.0 15.0 15.0 16.0 17.0 17.0 18.0 18.0 18.0 18.5 19.0 20.0 20.0 20.0 21.0 21.0 addzownuns f here are no fow names, creale them

(17] 21.0 22.0 22.0 24.0

> head(sort(dfSHousehold_area) , -1)+diff (sort(df Sousehold_area)/2) from e o e

[1] 14.50 15.00 15.50 16.50 17.00 17.50 18.00 18.00 18.25 18.75 19.50 20.00 20.00 arguments 1o be passed to or from
[14] 20.50 21.00 21.00 21.50 22.00 23.00 other methods

> F

That could be there in the resulting partition. So, resulting partition having the least
impurity; that means, more you know homogenous partition so that particular value

combination would actually be selected for (Refer Time: 02:06).

So, what if the variable if our variable is categorical? So, in that particular case the set of
categories that we have they are divided into two subsets, for example, if we have a

particular variable.

(Refer Slide Time: 02:29)




Let us say we have this variable. So, our values on the categories that are there, they
could be this. So, from this we have to we can have many midpoint many set of possible
candidates here right. So, there could be different you know value there different options
here for example, you know this could be one. So, we have to create two parts from here.
So, one category will go into one part the other categories will go into the other part right
part 1 and part 2. So, in this fashion there could be various other candidates it could be B
and others could be here then similarly it could be you know C and the others could be
here. So, in this fashion there could be many combinations of these splits. So, there could

be many split value the predictor and split value combination in this case also.

So, for categorical variable this is how we can create you know different combination of
variable and split value. So, two subsets, for each the variable 4 categories A B C D, so
all you know two subsets combination could be the different values that can be used as

the possible set of candidate.

Now, let us talk about the impurity measures that we could be using for in this in this in
this particular algorithm classification and regression tree. So, impurity measures that we
are going to cover is two measures mainly a gini index and entropy measure. So, let say

start our discussion on gini index.
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I 000
CLASSIFICATION & REGRESSION TREES

¢ Impurity Measures
— Gini index and Entropy measure
* Gini Index

For an outcome variable with m classes, Giniimpurity index for a
rectangular part is defined as

m
gini=1- z P2
k=1

Where P, is the proportion of rectangular part observations belonging to
class k
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So, for an, so both these majors whether gini index or entropy measures, they are in a

sense major the impurity. So, for impurity for the original, original rectangle, original



group in our in our data and then once we create partitions. So, two parts part one and
part two for each of those parts we can further compute the impurity using these matrix.
So, then later on we can compare that the after we have done the particular partition after
we have done a particular split whether there has been a decrease in impurity. So, how do
we measure that impurity of different partitions? So, these are the two matrix which can

be used gini index and entropy measure.

So, let us talk about the gini index first. So, for an outcome variable with m classes, gini
impurity index for a rectangular part is defined as this gini 1 minus summation over k
one to m because we have m classes and then P k square, where P k is the proportion of
rectangular part observation belonging to class k. So, for each class if we have we have
m classes, for each class will have to compute the proportion of observations belonging

to that class in that particular rectangular part.

So, for example, if we had the full original rectangle all the observations and. So, we can
compute the you know for each class, class 1 tom ¢ 1, ¢ 2 up to ¢ m for each class we
will have to compute the proportion values right proportion of observations belonging to
class one in that particular rectangular part. Portion of observation belonging to class ¢ 2
again in that same rectangular, in this fashion for all classes ¢ 1 to ¢ m we will have to
compute the this proportion values P k and then square and summation of this. So, this
will actually represent, this will actually the summation of this once we subtract this

value from one this is actually going to represent the impurity right.

So, this will give us the impurity index for the rectangular part and once we create
partition once we do a split we will have two more parts. So, for those two parts again
we can use the same formula to compute their impurity value and these two parts we can
add these two, we can add the impurity values of these two parts and then we can
compare it with the original rectangular partition and see how much impurity has been
reduced because of the partitioning alright. So, this is one particular metric that we can

use.

Let us talk about the second metric entropy measure. So, before that let us understand the

values gini values range. So, gini values lie in this range 0 m minus 1 divided by m.
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* Gini Index

— Gini values lie in the range {0, (m-1)/m}for m-class scenario and {0,
0.5} for two-class scenario

* Entropy Measure

For an outcome variable with m classes, entropy for a rectangular part is
defined as

m
Entropy = - z P.log,(P,)
k=1
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So, if there are m classes. So, this is going to be the range for gini index and if there are
if there are just two classes so the range is going to be 0 to 0.5. So, for 0 to 0 0.5, when
the how we compute these two range? When in a two class scenario if the representation
of both the classes is equal right, in that case the proportion would be 0.5 and 0.5 for
both the classes. Now, if you go back to the expression here 1 minus summation over P k
square. So, we have use 0.5 and 0.5 for both the classes. So, you would get that value
right. So, the value that you get and then that is going to be 0.5 so that is going to be the
highest value. So, when we have the equal representation from all the classes the value
the gini index value is going to be the highest because there that is the situation where
the impurity is, where the impurity is highest because the observations belonging to
different classes they are equal. If there in a particle rectangular partition if most of the
observations belong to one particular class then of course, impurity is less because very

few observation would be belonging to other class.

If this you know this particular ratio keep on decreasing and becomes equal where you
know the different classes the observation belong different classes they are in equal
proportion then of course, the impurity is going to be the highest and that is also you
know indicated in this particular range. So, m class scenario the value is going to be 0 m

minus one divided by m and 2 class scenario the value the range is going to be 0 to 0 0.5.



Let us talk about the next metric that is entropy measure. So, for an outcome variable
with m classes and entropy for a rectangular part is defined as this entropy minus
summation over k equal to 1 to m and P k log and log of P k base 2. So, this is how we
compute the entropy value. So, as we discussed for gini index right same thing P k stands
for the same thing proportion of class k members in the rectangle in the rectangular part.
So, then we compute that value then we take log of it log base 2 of it and then multiply
these value and then sum it over and classes and the minus of that is going to be the

entropy value.
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* Entropy Measure

— Entropy values lie in the range {0, log,(m)} for m-class scenario and {0,
1} for two-class scenario

* Open RStudio

* Tree diagram or tree structure

— Each split of p-dimensional space into two parts can be depicted as a
split of a node in a decision tree into two child nodes

— First split creates branches of root node
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So, the range for entropy value, here it is going to be 0 and a log m base 2 for m class

scenario and 0 and 1 for 2 class scenario, how?

So, for example, for two class scenario the highest impurity is going to be in this
situation when the members belonging to each of those two classes they are in equal
proportion they are in equal numbers. So, in that case the P k value is going to be 1 by 2
or 0.5. So, if the P k value is 1 by 2 you can plug in that value in this particular
expression and you will get that log base 2 of 1 by 2 is going to be you know minus 1.
So, that minus they will cancel out and then P k is there then that you will get the 1 by 2
and then for the second the other class also it will compute this value and once you sum

it 1 by 2 plus 1 by 2 is going to be 1. So, this is how the range is.



So, highest impurity highest impurity scenario is when the all the classes they have equal
proportion they have equal representation in a particular rectangular part right. So, that is
when the highest impurity is going to be there and that will also give us the range for
entropy values and also for gini index. So, what we will do? To understand more about

these two particular matrix will do a simple exercise in R. So, let us go back.
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33 sort(dfSHousehold_Area) " Data
34 head(sort(dfSHousehold_area) ,-1)+diff (sort(df SHousehold_rea)/2) 0df 20 obs. of 3 variables [
35 # For categorical variables
36 # set of categories 1s divided into two subsets
37
38 # Gini impurity index and entropy measure
39 # plot of gini vs. P1 (proportion of observations in class 1)
40 # for a two-class case
41 Pl=seq(0,1,0.1) n
42 gini=nuLL Fles Plots Pad Help Vi 0
43+ for(i in 1:1ength(p1)) { Bl eoge) Hole [Aever s&
4 gini[i]=1-(P1[i]A2 + (1-P1[i1)A2) PP R34 head
45
he i AT of a0 Object +
B 1L aint, yTabrm et indets type =11 IC AR the 175107126 B3P of an Object
4 -1 Arguments
NI (oplew) 2 Rcrpt +
Console G/Sesslon 9/ =0l * &n object
> head(sort (df Sannual_Income) , -1) fl o asingle integer. If positive, size for the
[11434749525359606262656565687681838588094 resulting object: number of elements
» head(sort(dfSannual_tncome) ,-1)+diff (sort (dfSannual_tncome)/2) for a vector (including lists), rows for a
[1] 4.50 4.80 5.05 5.25 5.60 5.95 6.10 6.20 6.35 6.50 6.50 6.65 7.20 matrix or data frame or ines for &
[14] 7.85 8.20 8.40 8.65 9.10 10.10 function. If negative, all but the 1
» sort(dfSHousehold_Area) IasUfirst number of elements of x

(1] 14.0 15.0 15.0 16.0 17.0 17.0 18.0 18.0 18.0 18.5 19.0 20.0 20.0 20.0 21.0 21.0
[17] 21.0 22.0 22.0 24.0

> head(sort(df$Household_Area),-1)+diff (sort(df SHousehold_Area)/2)

(1] 14.50 15.00 15.50 16.50 17.00 17.50 18.00 18.00 18.25 18.75 19.50 20.00 20.00 arguments fo be passed to or from
(14] 20.50 21.00 21.00 21.50 22.00 23.00 other methods,

> J

addrownuns  if there are no row names, create them
from the row numbers.

So, let us first understand the plot of you know gini values versus P 1 this which is
proportion of observations in class 1 now this is for a 2 class. So, let us understand how
the plot is going to be depending on how we vary the proportion of observation
belonging to class 1. So, let us say that P 1, this is our, sequence is the function that we
can use to generate different proportions. So, let us compute this you can see P 1 has
been created as you can see in the environment section and if you are interested in
looking at the specific values. So, the proportion can range from 0 to 0.1 to 0.2 to 0.3 up

to 0.9 and then 1.
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35 # For categorical variables ]
36 # et of categories is divided into two subsets allies

37 Pl num (1:11] 0 0.1 0.2 0.3 0
38 # Gini impurity index and Entropy measure

39 # plot of gini vs. Pl (proportion of observations in class 1)

40  # for a two-class case

41 pl=seq(0,1,0.1)

1 @ cilobal  nvironment =

42 gimi=NULL Fies  Plots  Pac Help | Vi -
43+ for(3 in 1:1ength(p1) { i o0l facagme] ko |Vl S
44 ginmi[i]=1-(P1[i)A2 + (1-P1[i])A2) X X1 head
41 h artof an Object +
46 plot(pL,gini, ylab = "Gini index", type = "1") e
4 - Arguments
21 (loplevel) ¢ W seript &
Console G:/Sesslon 9/ =01 * an object
[1] 4.50 4.80 5.05 5.25 5.60 5.95 6.10 6.20 6.35 6.50 6.50 6.65 7.20 i asingle integer.If positive, size for the
[14] 7.85 8.20 8.40 8.65 9.10 10.10 resuting object: number of elements
> sort(dfSHousehold_area) for a vector (including lists). rows for a
[1] 14.0 15.0 15.0 16.0 17.0 17.0 18.0 18.0 18.0 18.5 19.0 20.0 20.0 20.0 21.0 21.0 matrix or data frame or lines for 8
(17] 21.0 22.0 22.0 24.0 function. If negative, all but the n
» head(sort(df$Household_area),-1)+diff (sort(dfSHousehold_area)/2) lastfirst number of elements of -

(1] 14.50 15.00 15.50 16.50 17.00 17.50 18.00 18.00 18.25 18.75 19.50 20.00 20.00

[14] 20,50 21,00 21,00 21.50 22.00 23.00 addrownuns  if there are no row names, create them

> plaseq(0,1,0.1) from the row numbers.

> Pl = arguments to be passed to or from
[|1] 0;00.10.20.30.40.50.60.7 0.8 0.9 1.0 a other methods

>

So, against these proportion values P 1 values we are going to compute gini index values
and then we are going to plot them. So, as we are already familiar with gini index
formula. So, let us first initialize this gini variable. So, let us do the initialization and
then we are going to run this loop i in 1 to length of P 1 that is eleven values in total. So,
for each of those values for each of those proportion values we are going to compute the
gini index. So, this was the, this is how we can express the gini index formula here in
(Refer Time: 00:00), 1 minus and within parenthesis we have for each proportion we
first, we use the proportion values and they take a square of it and then we do a sum and

then we add all these values for the all the classes.
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i 2 s IE et the s o 1 35t bart of an Object +
48 # plot of entropy vs. P1 (proportion of observations in class 1)
49 # for a two-class case -\ Arguments
61 (loplevel) ¢ Weript ¢
Console G:/Sesslon 9/ =00 * an object
(17] 21.0 22.0 22.0 24.0 B asingle integer. If positive, size for the
> head(sort(df$Household_Area),-1)+diff (sort(dfSHousehold_area)/2) resulting object: number of elements
[1] 14.50 15.00 15.50 16.50 17.00 17.50 18.00 18.00 18.25 18.75 19.50 20.00 20.00 fora vector (including ists) rows for a
[14] 20.50 21.00 21.00 21.50 22.00 23.00 matrix or data frame or lines for & I
» Pl=seq(0,1,0.1) function. If negative, all but the
> Pl last/first number of elements of .
};3"?‘&&1 U2 018 0 09 (46 G (3 00 310 addzownuns  if there are no row names, create them
> for(3 in 1:Tength(P1)) { 10 e o narbers
+  gini[i)=1-(pP1[i]A2 + (1-P1[i])A2) arguments to be passed to or from
+1 ; other methods
2 3

So, let us compute this. We would see that a gini vector numeric vector has been has
been created again 11 value. So, 11 gini index values corresponding to different

proportion values right. So, let us plot this.
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35 ¥ ror categorical variaoies

36 # set of categories is divided into two subsets
37 - pata

38 # Gim Impurity index and Entropy measure 0df 20 obs. of 3 variables [
39 # plot of gini vs. P1 (proportion of observations in class 1) 1

40 # for a two-class case jaley

41 Pl-seq(0,1,0.1) gini num (1:11] 0 0.18 0.32 0.4

42 gimi=NULL 1 11

43+ for(i in 1:length(pl)) { Pl num [1:11] 0 0.1 0.2 0.3 0.
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45
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49 # for a two-class case

50 entropy=NULL

51« for(i in 1:length(Pl)) { 5
K1 (lopleve) ¢ Weript ¢

& clobal  nvironment = Q

Console G:/Sesslon 9/ B0
> head(sort(dfSHousehold_Area),-1)+d1ff (sort(df SHousehold_area)/2) i o
[1] 14.50 15.00 15.50 16.50 17.00 17.50 18.00 18.00 18.25 18.75 19.50 20.00 20.00
(14] 20.50 21.00 21.00 21.50 22.00 23.00

> Pl=seq(0,1,0.1)

Gini index
03

?

> Pl

[1] 0.00.10.20.30.40.50.60.70.80.91.0
> gini=NULL

> for(i in 1:length(pl)) {

+ gm)=l-(PLGIA + (1-PL0DA2) 00 04 08

+
> plot(Pl,gini, ylab = "Gini index", type = “1") o P1
>

And this is the plot gini index versus proportion. Now, from here you can clearly
understand as the proportion increases from 0 to 0 0.5 somewhere here you would see
that gini index, index value is highest and it is 0.5 as we talked about right and as we

further increase the increase the proportion right then again because P 1 this proportion



keeps on increasing again then the gini index value this will start decreasing right. So,
this will keep on decreasing and again when the proportion is 1 this will go to this will

become 0. So, this is how the values are going to be for gini metric, gini index.

The same thing we can do for entropy measure as well. So, let us plot and let us plot a
graph entropy versus P 1 that is proportion of observation class 1. So, P 1 for we have
already defined. So, let us initialize the entropy here now within for loop you can see
how we have written the code for calculation of entropy value. So, you can see for each
class we have one expression and each expression we have proportional and then
multiplied by log base 2 value of that proportion and once we sum all these expression
and we take a minus of it. So, let us run this loop to find out the entropy values you can
see 11 values have been created right. You would see that first particular value thatisn a
n it is showing as n a n, this is mainly because the proportion value for 0 here and log of

0 is not defined. So, because of that we have got this particular value.

So, let us plot. So, here you would see that in the plot function we are also using a spline
function which will smooth smoothen the plot that we generate. So, let us see how what
is going to happen. So, this is the plot here. So, you can see this particular plot is much
more smoother than the plot that we had created for gini index. So, again here also as we
move from 0 to 0 0.5 you would see that entropy measure is this particular value is
maximum the value is 1 at 0.5 and as this proportion P 1 increases further this value goes
down up to 0. So, this was about the two matrix, two matrix the gini index and entropy

measure. So, let us talk further about our technique classification and regression trees.

So, next important point is the t diagram or t structure that we create. So, as we talked
about the recursive partitioning steps. So, let us understand the t diagram what is how
this is going to be built. So, for each split of P dimensional space into two parts, so that is
of course, the part of recursive partitioning, can be depicted as a split of a node in a
decision tree into two child nodes. So, we can have a root node right, we can have a root
node, let us this is our root node and this is the original party partition then the each split
that we perform it can be denoted using two nodes here, right. So, this is one part 1, this

is part 2. So, in this fashion they split that we are talking about can be created.

So, P dimensional space if it is P dimensional space we will start with the root node and

this is going to be partition two parts are going to be created. So, this can be represented



in this fashion decision node having two child nodes. Now, once we have these two parts
these two child nodes then again the same process would be applied on these two parts
till you know, so the tree will start growing till the point we have created homogeneous
partitions or homogeneous groups. So, first split creates branches of root node. So, as we
can see. Now, two types of nodes in tree structure first one is a decision node. So, that is
depicted with a circle here and then the second one is terminal or leaf node that is

typically depicted using rectangle right.

So, these terminal nodes they typically they correspond to final rectangle parts. So, when
we talk about just the recursive partitioning step where we build the full grown tree; that
means, we get pure homogeneous parts. So, in that case we are going to have you know
terminal nodes. So, for example, if this was you know root node and we created two
partitions and once we created two partition we were able to achieve the homogeneous
rectangles right. So, let us say further partitioning of this leads to homogeneous
rectangles right. So, we will have, we can represent those nodes because they are going
to be the terminal nodes leaf nodes using these rectangles right. So, these are decision
nodes right. So, predictor and predictor value combination are going to be applied on
these decision nodes and then the terminal nodes would indicate the actual class because
this is now pure homogeneous group. So, it is going to be either class 1 or class 0, class 1

or class 0. So, in this fashion the tree structure could be there.

So, two types of node decision nodes and terminal node. So, decision nodes are the one
where we apply the predictor value combinations and create a split and the terminal
nodes or leaf nodes are the one where we finally, end up with pure homogeneous part
homogeneous group and therefore, we can label it with the class name class 1 or class 0

if it is a two class case.

Now, let us understand the steps to classify new observations, new observation using tree
based models. So, for a new observation once the tree has been built. So, new
observation to be classified can be dropped down the tree. So, it can be dropped down
from root node and then depending on the different comparison it will take different

branches and the finally, it will end up with the terminal node or leaf node.

So, first step new observation to be classified is drop down the tree is starting from root

node and at each decision node which also root, root node, root node is the first decision



node. So, at each decision node the appropriate branch is taken until we reach a leaf node
right. So, for example, this is a variable, variable V 1 and you know let us say X 1, this is
X 1 and then the corresponding value for this particular you know variable is V 1 and the
split is created right. So, values less than V 1 they go this side values greater than V 1
they go this side two parts alright. So, in this fashion here again we will have another
variable X 2 and the value V 2 here we will have X 3 and value V 3 right and then the
observation having value less than V 2 will go here greater than V 2 will come here

similarly for here.

So, in this fashion we will continue till we till the new observation reach the terminal
node or leaf node where then finally, it is going to be classified as per the class of that
particular terminal node. So, finally, at leaf node majority class is assigned to the new
observation. So, now, this is going to be when we do not have any special class of
interest where we are trying to maximize the overall accuracy or trying to minimize the
overall misclassification error, but when we have a special class of interest as we have
been talking about in previous lectures for other techniques the steps are going to change
a bit. For example for a class of interest scenario proportion of records belonging to the

class of interest is compared with the user specified cut off value for the same right.
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So, for the once you once we reach the leaf node typically you know when we talk about

the recursive partitioning it is going to be a purely homogeneous partition. So, there is



going to be no such problem, but if the tree is not fully grown tree it has been pruned
back pruning will discuss in coming lectures. So, in that case the partition the leaf
terminal node might not be homogeneous and there could be some observation belonging
to other classes. So, therefore, how do we decide? So, for when we try to, when we do
not have any special class of interest and when we are looking to maximize overall
accuracy in those situation we can just look at the majority class in the terminal node and

assign that class to the new observation.

But when we have a class of interest we will compute the proportion of records
belonging to that class of interest and then compare this particular proportion value to the
user specified cut off value because that is the class of interest. So, we would like to
identify more observations belonging to that class one even if it comes at the expense of
miss identifying more observation belonging to other classes. So, the step is, this step

final step is going to change depending on whether we have a class of interest or not.
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0] 9meecnx (]| environment  History " Ym]
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48 # pIOT OT entropy VS. Pl (Proportion OT 0DSErvations 1n Ciass 1)
49 # for a two-class case
50 entropy=NULL pata 7
51- for(i in 1:1ength(Pl)) { 0df 20 obs. of 3 variables 8

1 @ clobal i nwironment =

52 entropy[i]=-(P1[1]*Tog2(P1[i]) + (1-P1[1])*10g2(1-P1[1]))

53 values

54 plot(spline(P1,entropy), type = "1", xlab = "P1", ylab = "Entropy Measure") entropy  num [1:11] Nan 0.469 0.722

55 gim num [1:11] 0 0.18 0.32 0.4

56 # First split in Sedancar example i

57 sunmary(df Sownership) St nun [1:11] 00.1 0.2 0.3 0. -
58 # Impuritylbefore split

59 giorg=1-(10/20)42-(10/20)A2 Files Plots Packages Help Viewer =C
60 emorg=-(10/20)*10g2(10/20)-(10/20)*10g2(10/20) =
61 o B Hegals 0 F 4 -

62 #upper rectangle
63 dfiniurec=1-(7/10)A2-(3/10)A2
64 emurec=-(7/10)*10g2(7/10)-(3/10)*10g2(3/10)

612 (Iop1evel) + Reript &

Console G/sesslor
(1] 0.0
> gini=NuLL

> for(i in 1:1ength(P1)) {

+  gini[i)=1-(PL[i]A2 + (1-PL[i])A2)

+1}

> plot(pl,gini, ylab = "Gini index", type = "1")
> entropy=NuLL

> for(i in 1:length(P1)) {

+ entropy[i]=-(P1[i]*10g2(P1[i]) + (1-P1[i])*10g2(1-P1[11)) 02 04 06 08

0.2 0.3 0.40.50.6 0.7 0.8 0.9 1.0

[0X-)

O P

Entropy Measure

0S5

R s e

+
» plot(spline(P1,entropy), type = "1", xlab = "p1", ylab = "Entropy Measure") P1
>

So, what we will do? I will go through a simple exercise in R. So, let us go back to R, but
before that let us also go through and this exercise where we compute the impurity using

two matrix that we talked about.
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0 gtreesit x =1 Environment History =0
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Soucconsae | @ Zoel £1 - “#Run % [ #Soune * T B mportvataset + | f list *

50 entropy=NuLL :
PY: 2 clobal | nvironment =

51« for(i in 1:length(Pl)) {

52 entropy[i]=-(P1[i]*T0g2(P1[i]) + (1-P1[i])*Tog2(1-PL[i])) | pata

i o PR k 5 o 0df 20 obs. of 3 variables [
54 plot(spline(Pl,entropy), type = "1", xlab = "P1", ylab = "Entropy Measure")

55 values

56 # First split in sedancar example entropy  num [1:11] Nan 0.469 0.722

57  summary(df Sownership) gim num (1:11] 0 0.18 0.32 0.4

58 # Impurity before split il

59 giorg=1-(10/20)A2-(10/20)A2 Pl num [1:11] 0 0.1 0.2 0.3 0. -
60 emorg=-(10/20)*10g2(10/20)-(10/20)*10g2(10/20)

61 fles  Plots  Packages Help  Viewer =0
62 #upper rectangle

63 giniurec=1-(7/10)A2-(3/10)22 P P Hppts 0 %
64 emurec=-(7/10)*10g2(7/10)-(3/10)*10g2(3/10)

65 ginilrec=giniurec

66 emlrec=emurec .

517 (lopevel) & weript ¢

Cansole G:/sesslon 5/ e
1] 0.0 0.1 0.2 0.30.40.50.6 0.7 0.8 0.9 1.0

> gini=nuLL

> for(i in 1:length(pl)) {

+  gini[i]=1-(P1[i]A2 + (1-P1[i])A2)

ol

> plot(pl,gini, ylab = "Gini index", type = "1")
> entropy=NULL |
» for(i in 1:length(pl)) {

+ entropy[i1=-(pL01]Tog2(PLL1) + (1-1031)*1og2(1-PLE1)) 02 04 06 08

[oX-]

[ O T

Entropy Measure
0s

+
> plot(spline(Pl,entropy), type = "1", xlab = "pP1", ylab = "Entropy Measure") P1
>

So, sedan car example that we have discussed before, let us look at the summary of this
particular ownership variable. So, we have 10 observation belonging to non owner
category and then observation belong to owner category. Now, the different matrix that
we talked about the impurity index how we can compute. So, for gini index and entropy
value for the original partition, original rectangle we can compute in this fashion you can
see 1 minus because 10 observation belong to the non owner category out of 20. So, in
this fashion we can compute the gini index for other classes as well. So, this would be
the gini value. So, entropy value also we can compute in this fashion you can see 10
observation belong to owner non remaining 10 of belong to non owner. So, in this

fashion we can compute the entropy value.
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5U  entropy=NuLL
51« for(i in 1:length(Pl)) {

1 @ cilobal i nvironment =

52 entropy[i]=-(P1[i]*T0g2(P1[i]) + (1-P1[i])*Tog2(1-PL[i])) | pata

33} ek s 5 " 0df 20 obs. of 3 variables ]
54 plot(spline(pl,entropy), type = "1", xlab = "P1", ylab = "Entropy Measure")

55 values

56 # First split in sedancar example emorg 1

57  summary(df Sownership) entropy  num [1:11] Nan 0.469 0.722
58 # Impurity before split gini num [1:11] 0 0.18 0.32 0.4
59 giorg=1-(10/20)A2-(10/20)A2 giorg 0.5

60 emorg=-(10/20)*10g2(10/20)-(10/20)*10g2(10/20)

61 fils Plots  Packages Help  Viewer =0
62 #upper rectangle & o

63 giniurec=1-(7/10)A2-(3/10)A2 D Prom | Hepre (9] %

64 emurec=-(7/10)*10g2(7/10)-(3/10)*10g2(3/10)

65 ginilrec=giniurec

66 emlrec=emurec .
621 (loplevel) ¢ Waeript &

g
Console G/sesslon 9/ REl G
> plot(Pl,gin1, ylab = "Gini index”, type = "1") 8 24 .
> entropy=NULL © 2 4 s
> for(i in 1:length(rl)) { (& otnjdl e¥H o0
v entropy[i]=-(P1[i]*10g2(P1[i]) + (1-P1[i])*1og2(1-P1[i])) < B
+} = 10 o
> plot(spline(Pl, entropy), type = "1", xlab = "pl", ylab = "Entropy Measure") 2 114 % | SRataStner
> sunmary (dfSownership) F
non-owner owner g 2 4 6 e 10
AE
> giorg=1-(10/20)A2-(10/20)A2
> emorg=-(10/20)*1092(10/20)- (10/20)*1092(10/20) 2 Annual Income (&'lakhs)

>

Now, once the first split that we had created earlier let us look at the graph. So, this was
the graph you can see here we had created the first split at you know household area
value of 18.8 and from this using this let us compute the gini entropy and entropy major
values. So, from this let us zoom into this particular plot. So, in the upper rectangular
part you can see we have 7 observations belonging to the owner class and 3 observations
belonging to the non owner class. So, it is 7 out of 10 to owner and 3 out of 10 non
owner for upper rectangular part. So, gini for upper rectangular is going to be 1 minus 7
divided by 10 and that is square of that then 3 by 2 divided by 10 square of that. So, in
this fashion we can compute the gini value for upper rectangular. Similarly for the
entropy value for the upper rectangular also we can compute using similar approach. So,

let us compute these two values.

Now, if we look at the graph again you can see that lower rectangular part this is
symmetric to the upper rectangular part in terms of proportion. So, portion of
observations belonging to the owner and non owner. So, you know upper rectangular is
dominated by owner lower rectangular is dominated by non owner, but the proportion
they are very symmetric. So, the values for gini index and entropy measure they are
going to be seen. So, why not assign the same values for lower rectangular as well. So,
gini value is going to be same as follow a rectangular is going to be same as upper
rectangular. Similarly entropy value is going to be a follow rectangular, is going to be

same as that for upper rectangular.
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56 # First split in Sedancar example

57  summary(df Sownership)

S8 # Impurity before split

59 giorg=1-(10/20)42-(10/20)42

60 emorg=-(10/20)*10g2(10/20)-(10/20)*10g2(10/20)

62 #upper rectangle

63 giniurec=1-(7/10)A2-(3/10)A2

64 emurec=-(7/10)710g2(7/10)-(3/10)*10g2(3/10)
65 ginilrec=giniurec

66 emlrec=emurec

68 pinisplitl=(10/20)*giniurec+(10/20)*ginilrec
69 emsplitl=(10/20) “emurec+(10/20)*emlrec

71 ginidelta=ginisplitl-giorg
w1 (opievel) &

Console G/Sesslon 9/

+
> plot(spline(pl,entropy), type = "1", xlab = "p1", ylab = "Entropy Measure")
> summary (df Sownership)
non-owner owner
10
» giorg=1-(10/20)A2-(10/20)A2
> emorg=-(10/20)*10g2(10/20) - (10/20)*10g2(10/20)
> giniurec=1-(7/10)A2-(3/10)A2
> emurec=-(7/10)*10g2(7/10)-(3/10)*10g2 (3/10)
> ginilrec=giniurec
> emlrec=emurec
>

0df

i i 3

& project Nor) =

Environment  History

P E mportiaaet

&) clobal t nvironment =

= values

Rseript &

=

emlrec 0.881290899230693
efiorg 1
emurec 0.881290899230693

ligt

20 obs. of 3 variables

T

entropy  num [1:11] Nan 0.469 0.722
gini num [1:11] 0 0.18 0.32 0.4
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Once this is done, so for a split 1 we can compute the gini index value. So, we will add
these two values for upper rectangular and lower rectangular. So, you can see we are also
multiplying these value by their proportion here. So, 10 out of 20 observations in the
upper rectangular, 10 out of 20 observation in the lower rectangular, this will give us the

impurity index after first split and for entropy values of (Refer Time: 29:28) split.
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59 giorg=1-(10/20)A2-(10/20)A2
60 emorg=-(10/20)10g2(10/20)-(10/20)%10g2(10/20)

62 #upper rectangle
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65 ginilrec=giniurec

66 emlrec=enurec

68 ginisplitl=(10/20) giniurec+(10/20)"ginilrec
69 emsplitl=(10/20) “emurec+(10/20)*emlrec

71 pinidelta=gimsplitl-giorg
72 endelta-emsplitl-emorg

74 # second split
NI (opleve) *

console G/sesslon 9/

> summary (df Sownership)
non-owner owner

> giorg=1-(10/20)A2-(10/20)A2

> emorg=-(10/20)*10g2(10/20)-(10/20)*10g2(10/20)
> giniurec=1-(7/10)A2-(3/10)A2

> emurec=-(7/10)*10g2(7/10)-(3/10)*10g2(3/10)

> ginilrec=giniurec

> emlrec=emurec

> ginisplitl=(10/20)*giniurecs(10/20)*ginilrec
> emsplitl=(10/20)*emurec+(10/20)*emlrec

>

=0
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& project (None) +

Environment  History.

T E | Pmporomen - |

2 clobal 1 nvironment =

=0

list

entropy  num [L:11] NaN 0.469 0.722
gini num (1:11) 0 0.18 0.32 0.4,

ginilrec 0.42
ginisplitl 0.42
giniurec  0.42

giorg 0.5
i 1L
ol rm f1-111 001 N20 20N
Files Plots Packages Help Viewer =0
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So, you can see in the environment section. So, values have been created you can split

one around 0.88 and again you split on around 0.42, and the original values also you can



see original valueis 0.5 giorgandemor g 1. So, now, we can compute the difference
between you know that the delta that deduction that has happened in impurity. So, that is
gini delta we can compute and e m delta. So, you can see e m delta minus this one minus
0.11 around minus 0.12 and gini delta is minus 0.08. So, if we can see there is a
reduction in impurity. So, therefore, these two the first split is force is help us in
achieving more, help us in achieving more homogeneous parts which is also very clearly

visible from the clots as well.

So, in this fashion we can keep on continuing creating partition.
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74 # second split

75 segments(7,0,7,18.8) 3
76 y Prm Hegulr @ f
77 # Final stage

78 egments(5.8,18.8,5.8,26)

79 segments(5.8,19.5,13,19.5) g

MY (opleve) * Weript +

Fils Plots Packages Help  Viewer |

e

console G/sesslon 9/ =E
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2 .
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» giorg=1-(10/20)A2-(10/20)A2

> emorg=-(10/20)*10g2(10/20)-(10/20)*10g2(10/20)
> giniurec=1-(7/10)A2-(3/10)A2

> emurec=-(7/10)*10g2(7/10)-(3/10)*10g2(3/10)

> ginilrec=giniurec

> emlrec=emurec

> ginisplitl=(10/20)*giniurec+(10/20)*ginilrec

Household Area (00s ft2)
o
S
L

> emsplit1=(10/20)*emurec+(10/20) *emlrec 24 830
> ginidelta=ginisplitl-giorg
> endelta=ensplitl-emorg Annual Income (&'lakhs)

>

So, I will stop here and the other partition and the values gini values and the other

excises and discussion will continue in the next lecture.

Thank you.



