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Dr. Gaurav Dixit
Department of Management Studies
Indian Institute of Technology, Roorkee

Lecture — 15
Dimension Reduction Techniques- Part III Principal Component Analysis

Welcome to the course Business Analytics and Data Mining Modelling Using R. So, in
the previous lecture we were discussing the dimension reduction techniques, and
specifically principal component analysis. In the previous lecture we applied principal
component component analysis on (Refer Time: 00:36) serious data base and two

particular variables and had it energy and (Refer Time: 00:40).

So, now today’s lecture will start will applying principal component analysis, on almost

all the values that are available in the data set.

(Refer Slide Time: 00:53)

TR

L i
Pe KA1 (% Vew NI Seson il RNy YN 105 Mol
Q- S v adding v &) project (Nore) =
@ 1dmx =] Environment History =0
M osouceoswe | Q 2o 1 . “FRun | % | #Soune v ?H Pportiaet v f list+
129 modsrotation[1,2]+ (dfpca[l,2]-mean(dfpcal,2])); First “ | @ clobal 1 nvironment =
130
131 vzlevar(modsx[,1]) #z1 values
132 vz2=var(modsx[,2]) #22 cl2 -264.638561622291
133 vzlevz2 #total variability First -1.38553710680905
134 100*vzl/(vzlsvz2) #energy int Named num 90.1
gé 1007v22/(vzl+vz2) #rating e e aeaes o
137 # principal components Analysis for all nunerical variables Onod List of 5
138 dfpca2=dfl[,-c(11,12)] slp -0.18674556996698
139
140  mod2=prcomp(dfpca2) Files Plots Packages Help Viewer =0
141 summary(mod2) # 3 PCs account for more than 90% variability T e oG

142 mod2Srotation
143 print(round(mod2$rotation, digits = 3))

144
148 # nrincinal camnanante Analucic afrar narmalizarian

1IK19_| (lop level) & seript &

Console C:/Users/user/Desktop/MOOC January 2018/Dr. Gaurav Dixlt/Sesslon 4/ =0 4
Saturated. fatty.acid Mono.unsaturated.fatty.acids Poly.unsaturated.fatty.acids . o 7

1) 0.06000000 0.03200000 0.00600000 2 5l

2 0.03000000 0.01600000 0.00300000 g o

3 0.04597701 0.04597701 0.02298851 & G|

4 0.16000000 0.12000000 0.04000000 J

5 0.10666667 0.05333333 0.02666667 QM|

6 0.93333333 0.00000000 0.00000000 &) | e e P T
Trans.Fatty.acids cholesterol sodium Iron Customerrating

1 it 0 0.00000000 0.000000 & 2 6 100 140

2 0 0 0.00000000 0.000000 60

3 0 0 0.04827586 1.011494 88 i Energy

4 0 0 0.03600000 1.680000 88
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So, as we talked about in the previous lecture that will include all numerical variables
except two, which are mainly having a zero values in almost all the cells, which will
eliminate them ah. So, generally generally different brands try to indicate that these two
you know these two particular variables stands for the assets and cholesterol or 0 in their
product so, that they can market them much better. So, that is why their information has

been recorded, but essentially yours most of the values are 0 that is not useful for us
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131 vzlevar(modsx[,1]) #z1 0 dfpca2 32 obs. of 13 variables [
132 vz2=var(mod$x[,2]) #z2 values
133 vzlivz2 #total variability cl2 -264.638561622291
134 100%vz1/(vzlsvz2) #energy First -1.38553710680905
135 100°vz2/(vzlsvz2) #rating 2
136 lv"t Named num 90.1
137 # Principal Components Analysis for all numerical variables intl Named num -284
138 dfpca2=dfl[,-c(11,12)] 0 mod List of §
139
140 mod2=prcomp(dfpca2) Files Plots Packages Help Viewer =0
m .f.:ﬂ';"?:ﬂ:?ﬁi # 3 pCs account for more than 90% variability e 8 2o | Beert+ | Q1| o B ruvih +
143 print(round(mod2Srotation, digits = 3)) =
144
148 # nrincinal camnanante Analucic afrar narmalizarian
01 (lop evel) & Weript ¢
Console C:/Usersjuser/Desktop/MOOC January 2018/0r. Gaurav Dixit/Sesslon 4/ =0 =1
> dfpeadzdfil,c(11,12)] i LS|
> head(dfpca2) o 5
Price  Energy Protein Carbohydrate Total.sugar Dietary.Fiber Fat ;—E\‘ o ]
1 79.80000 70.10000 4.0000000  14.400000  1.976000  2.2000000 0.1000000 ® &
2 79.90000 35.05000 2.0000000  7.200000  0.988000  1.1000000 0.0500000 il
3 41.14943 25.74713 0.4137931 5.862069 1.862069 0.3218391 0.1379310 o :
4 43.60000 44.40000 1.0800000  9.960000  4.160000  0.6000000 0.3200000 G
5 42.66667 30.13333 0.6666667 6.720000  2.933333 0.2933333 0.2133333
6 133.33333 101.33333 2,1333333  18.400000  6.400000 2.4000000 1.6000000
Saturated. fatty.acid Mono.unsaturated.fatty.acids Poly.unsaturated.fatty.acids
0.06000000 003200000 0.00600000 g Energy
2 0.03000000 0.01600000 0.00300000
2 0 04507701 0 04507701 0 02708851
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# principal components Analysis for all numerical variables
dfpca2=dfl[,-c(11,12)]

mod2=prcomp (dfpca2)

summary (mod2) # 3 pcs account for more than 90% variability
mod2Srotation

print(round(mod2Srotation, digits = 3))
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Cansole C:/Users/user/Desktop/MOOC January 2018/Dr. Gaurav Dlxlt/Sesslon 4/

2 0.03000000 0.01600000

3 0.04597701 0.04597701

4 0.16000000 0.12000000

D) 0.10666667 0.05333333

6 0.93333333 0.00000000
sodium Iron CustomerRating

1 0.00000000 0.000000 84

2 0.00000000 0.000000 60

3 0.04827586 1.011494 88

4 0.03600000 1.680000 88

5 0.00240000 1.120000 98

6 0.12000000 2.346667 66
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So, let us select the appropriate data frame. So, now, if you want to look at the selected
variables again P C a 2 is the new data frame, here we have subsetted ah. So, you can see
the variables that all almost all the variables that were originally available in the data sets
had been taken for principal component analysis had it starting on price energy, protein,
carbohydrate. So, were dietary fibber fats, saturated fat fatty acids and mono unsaturated

fatty acids poly unsaturated fatty acids sodium iron and last one the customer rating.

i i 3
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So, let us apply principal component analysis, the p r comp is the function again we are

going to use it. So, let us execute this particular code, now let us look at the summary.
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131 vzl=var(modsx[,1]) #z1 AT

W s bt sy T

134 100'vz1/(vzlsva2) fenergy First  -1.38553710680905

135 100%vz2/(vzl+vz2) #rating int Named num 90.1

136 intl Named num -284

137 # principal components Analysis for all numerical variables O mod List of §

gg dfpcaz=dfi[,-c(11,12)] Onod2 5 7 5

140 mod2=prcomp(dfpca2) Files Plots Packages Help Viewer =0
141 summary(mod2) # 3 PCs account for more than 90% variability

142 mod2Srotation @ B zom | Hegot+ Q] % pubish -
143 print(round(mod2Srotation, digits = 3)) &

144

145 # principal Components Analysis after normalization

M2 (lop i evel) + W Seript +

) clabal | nvironment «

Console C:/Users/user/Desktop/MOOC January 2018/0r. Gaurav Dlxlt/Sesslon 4/ =0
> mod2=prcomp(dfpca) 3
> summary(mod2) # 3 pcs account for more than 90% variability
Importance of components¥s:
pcl P2 pc3 pc4 PCS PC6 pc7
standard deviation 62.8391 41.0558 12,7945 2.18288 1.26517 0.55684 0.49229
proportion of variance 0.6802 0.2904 0.0282 0.00082 0.00028 0.00005 0.00004 o
cumulative Proportion  0.6802 0.9706 0.9988 0.99958 0.99986 0.99991 0.99995 tJ
PC8 PCY PC10 PELUSPCL pcl3
standard deviation  0.40920 0.27212 0.17206 0.08016 0.0493 0.01557
proportion of variance 0.00003 0.00001 0.00001 0.00000 0.0000 0.00000
Cumulative Proportion 0.99998 0.99999 1.00000 1.00000 1.0000 1.00000 Energy

> 3
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Now, so, you would the at 13 principal components having used. If you look at the if we
look at the number of variables that we had in this new data frame on which we applied

principal component analysis.
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132 vz2=var(modSx[,2]) #z2 12 -264.638561622291

133 vzlavz2 #total variability First  -1.38553710680005

134 100%vzl/(vzlsvz2) #energy

135 100%vz2/(vzl+vz2) #rating nt Named num 90.1

136 intl Named num -284

137 # principal components Analysis for all numerical variables Qmod List of §

i;g dfpca2=dfi[,-c(11,12)] Onod? foe i

140  mod2=prcomp(dfpca?) Files Plots Packages Help Viewer =0

141 summary(mod2) # 3 PCs account for more than 90% variability 2
142 mod2Srotation & Bzoon Hegols 0§ % rbiish -

143 print(round(mod2Srotation, digits = 3)) 1

144

145 # principal components Analysis after normalization

V21 (iopevel) & Weript +

Console C:/Users/user/Desktop/MOOC January 2018/Dr. Gauray DIxlt/Sesslon 4/ =0 o
§ Protein cnum 42 0.414 1.08 0.667 ... £ o
§ carbohydrate tnum 14.4 7.2 5.86 9.96 6.72 g bl
$ Total.Sugar < num 1,976 0.988 1.862 4.16 2.933 ... 5 o
§ Dietary.Fiber tnum 2.21.10.3220.60.293 ... (e LA
§ Fat :num 0.1 0.05 0.138 0.32 0.213 . all
§ saturated.fatty.acid : num 0.06 0.03 0.046 0.16 0.107 =
§ mono. unsaturated. fatty.acids: num 0.032 0.016 0.046 0.12 0.0533 )

$ poly.unsaturated.fatty.acids: num 0.006 0.003 0.023 0.04 0.0267

§ sodium 2 num 00 0.0483 0.036 0.0024 ...

$ Iron tnum 00 1.011.681.12 .

Sl CustomerRating : num 84 60 88 88 98 66 68 90 84 86 ... Energy
> -

We count the number of variables, we can apply names function as well. So, 13 were

there ah. So, now, 13 original variables were there, and now we have 13 principal



components. Now let us look at the different values that we got after applying principal
component analysis. So, first P C 1 if you see the proportion of variance, its 68 percent
and the second is prince second principal component is 29 per 29 percent. So, if you

combined these two 68 and 29 its almost its its almo almost I think 97 percent.

So, these two principal components P C 1 and P C 2 almost conti almost contributing 97
percent of the variability that was there by the original variables. So, we can eliminate
other principal components. So, only these two principal components are capturing the
most of the variability is therefore, the dimension can be reduced from 13 to 2 because
the because of the most of the variability being captured by these two variables. Other
principal component say v c; that the amount other variability that proportion are various
type they cap captured is a less than 3 percent. P C is the 2.8 and then others are others

are insignificant totally insignificant.

The first two we can have the first two principal components has two dimensions and

therefore, we would able to reduce the dimensionality from the 13 to 2. So, let us look at

other values.
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141 summary(mod2) # 3 PCs account for more than 90% variability fies Plots Packages Help  Viewer )
142 mod2Srotation - ( ==
143 print(round(mod2Srotation, digits = 3)) = @ P on Begatr O f % ruvish +
144 d

145 # principal components Analysis after normalization
146 mod3=prcomp(dfpca?, scale. = T)

M1 (lopevel) & s

Console C:/Users/user/Deskiop/MOOC January 2018/Or. Gauray Dixlt/Sesslon 4/ =0 4

protein 1.666122e-02 i o

carbohydrate -1.574366e-02 g‘ 1

Total.sugar 1.815444e-02 T § o ]

Dietary. Fiber 5.140251e-02 o B3

Fat 7.581018e-02 a

saturated.fatty.acid -1.887152e-01 o

Mono.unsaturated. fatty.acids 1.454671e-01 0 T e R T T
poly.unsaturated.fatty.acids -1.845899%-01

Sodium 9,485535e-01 20060 & 00E 140
Iron -1.241139-02

Customerrating -3.092277e-04 Energy

>

So, let us look at the rotation weight weights. So, these are the weights.
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136 int Named num 90.1
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138 dfpca2=dfl[,-c(11,12)] O mod List of §
139 ;
0 mod2 List of §
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145 # principal components Analysis after normalization
146 mod3=prcomp(dfpca?, scale. = T)

M1 (lopievel) & weript ¢
Console C:/Users/user/Desktop/MOOC January 2018/0r. Gauray Dixlt/Sesslon 4/ =0 o
o |

> mod2§rotation 8 @

pcl PC2 pc3 pC4 o 5
Price -9.990857e-01 -5.296846e-03 0.0382416147 0.005709685 5 el
Energy 9.364946e-03 -9.682911e-01 0.1783599195 -0.115549719 & O]
Protein 2.305693e-03 -2.835150e-02 -0.0085660113 -0.100217369 i
carbohydrate 1.752013e-02 -1.653714e-01 0.0301380919 0.681287846 o :
Total.sugar -7.782504e-03 -1.701840e-02 0.0100057219 0.63214&’125 0 T ]
Dietary.Fiber 2.498811e-03 -2.715259e-02 -0.0107641789 -0.128275103
Fat ~1.157682e-03 -2.159428e-02 -0.0013896152 -0.240264825 20 60 A0 40
saturated.fatty.acid -9.390429e-05 -3.988872e-03 -0.0004680672 -0.027688038 4
Mono.unsaturated. fatty.acids -8.321504e-04 -6.343570e-03 -0.0013761950 -0.110350240 Energy
poly.unsaturated.fatty.acids -8.798569-04 -8.408098e-03 -0.0050712002 -0.139003216
cadsim -4 778C12a_NC _0 270874a.NC N NNNA4CR174 N N1I81RK22

Let let us look at the nicer version of this. So, we will ha will have we look at just three
values, three decimal values ah. So, now, look at let us the first principal component P C
1. So, let us see which variables which original variables are contributing to P C 1 you
would see that price that is minus 0.99. So, the first principal component is mainly
determined by price and other original value means they are they are contributing to in in
significant amounts. If we look at the second principal component, then it is you can look

at the second values this is energy minus 0.968.

So, second principal component main contribution is coming from energy. So, P C 1 is
essentially we can say price plus kind of variable and P C 2 is energy plus kind of
variables. So, most of the variability being captured by price and energy; if you try to
make sense of it you would see generally Indian consumers when they buy breakfast
serious, they might they generally you know we might have this perception that they

generally go for price and energy same is being reflected in a way here .

So, other principal components. So, proportional variance they explain was anyway quite
less and then. So, they it does not make much sense to look at the contribution of original
variables to these principal components. So, P C 1 P C 2 its like price plus an energy
plus. So, let us move forward now what is a problem here in this case? There is one
problem that is there in this analysis that we applied. So, we look at the the variables that

we are talking about its price that is in measured in a rupees, then the energy then that is



being measured in kilo calories, and protein and carbohydrate and other contents there
we measured in grams and mile grams ha right. So, we look at we have having different
you know measuring units. So, it is still the data that was fed to principal components

analysis that was not normalized.

So, may be that was the reason we had just two principal components dominating most
of the variability. So, let us apply principal component analysis after normalizing, all the
numerical variables and a study. So, let us run another principal component analysis. So,
again this time we are going to use the same data frame; that is d a P C A to and now we
would see scaling is being down. So, scaling second argument is scaling is prove in the

function now this let us execute this.
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137 # principal components Analysis for all numerical variables 1 @ clobal i nvironment =
138 dfpca2=dfl[,-c(11,12
gl cfecozadhilic(lL 1) 2 -264.638561622201
140 mod2=preonp (dfpca2) First -1.38553710680905
141 summary(mod2) # 3 PCs account for more than 90% variability int Named num 90.1
142 mod2Srotation intl Named nun -284
iﬁ print(round(med2Srotation, digits = 3)) Omod List of §
145 # principal components Analysis after normalization O mod2 List of §
146 mod3=prcomp(dfpca2, scale. = T) O mod3 List of §
147 summary(mod3) # 7 PCs account for more than 90% variability
148 pod3srotation Files Plots Packages Help Viewer =0
149 print(round(mod3Srotation, digits = 3)) » B 2m | Boywt~ | 911 o B riwr +

151 range(mod3sx[,1])
152 range(mod3$x[,2])

1€ manfman=afd A 10) rav-h 7
MEY  (Ip evel)

Console C:/Users/user/Deskiop/MOOC January 2018/Dr. Gaurav DIl/Sesslon 4/

> mod3=preonp(dfpca, scale. = T) 8
> summary(mod3) # 7 Pcs account for more than 90% variability = l
Inportance of componentss: % o

Pl ipc2iipca iR pcd i IpeS PCGRNIPCTAN P E e O
standard deviation 2.5391 1.4664 1.1583 0.98897 0.88734 0.73466 0.63405 0.41692 il
proportion of variance 0.4959 0.1654 0.1032 0.07524 0.06057 0.04152 0.03092 0.01337 8 A

cumulative Proportion 0.4959 0.6613 0.7645 0.83978 0.90035 0.94187 0.97279 0.98616
PCY PC10 pCcll pCcl2 pCcl3

standard deviation  0.32357 0.22357 0.13821 0.06429 0.04446 20 60 100 140

proportion of variance 0.00805 0.00384 0.00147 0.00032 0.00015

Cumulative Proportion 0.99422 0.99806 0.99953 0.99985 1.00000 Energy

>

Let us look at the results, now these results are after doing normalization. So,
normalization something that we have talked about in the previous lectures, we talked
about that sometimes some variables because of the skills they can dom they can
dominate results, they can influence the results and which might not be desirable in most
of the scenarios. So, therefore, normalization is the one recommended step, before going

add with the, you know going add with the building of your own model or running your

model.

So, now this particular results that we see there after doing normalization. Now if we

look at the portion of variance now we see P C 1 50 percent of variance is being captured



by P C 1 16.5 is captured by P C 2 10.3 is captured by P C 3 you can see much bigger
role for P C 3, you can see even you know bigger role by P C 4 also same 0.5 percent,

similarly P C 6 6 percent, we can see P C 6 4 percent P C 7 are 3 percent and after that.

So, you can see that first you know 7 first you know 7 principal components they are
capturing more than 90 percent of the variability and most of the variability in the
original variables. So, now, the dimensional dimensionality which we thought when we
when we ran principal component analysis you know without doing normalization, we

thought it was reducing from 13 to 2 that was not the actual case.

If we do normalization if we do scaling and we find out that it is actually from 13 to 7;
so, we would still we requiring 7 new dimensions to capture most of the variability. Let
us look at the weights of new principal components. So, let us look at the nicer version
three decimal points, of to three decimal points let us start with first principal

component.
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int Named num 90.1
}ﬁ print(round(mod2Srotation, digits = 3)) ] P T
145 # principal components Analysis after normalization O mod List of §
146 mod3=prcomp(dfpca2, scale. = T) 0 mod2 List of §
147 summary(mod3) # 7 pCs account for more than 90% variability g ey
148 mod3srotation Soc: Listots
izg print(round(mod3Srotation, digits = 3)) Fies Plots Packages Help Viewer e
151 range (mod3sx[,1]) ] Boon Hegals 0§ % rbiish -

152 range(mod3$x[,2])
153 par(mar=c(4,4,1,1), cex=0.7)
154 plot(mod3sx[,1], mod3sx[,2], x1im = ¢(-8,5), ylim = ¢(-5,2),

111 (lop Level) & Rcrpt +
Console C:/Users/user/Desktop/MOOC January 2018/Dr. Gaurav Dixit/Sesslon 4/ =0
PG LR P2 P R P PG B PG 6 B PC/AIPCS
pPrice -0.001 0.002 -0.794 0.107 -0.216 -0.336 -0.258 0.303 2
Energy -0.367 -0.141 0.048 0.266 0.030 -0.060 -0.013 0.023 =1
Protein -0.350 -0.016 0.176 0.216 -0.172 -0.036 0.008 0.571 g
carbohydrate -0.327 -0.246 0.176 0.350 -0.026 -0.018 0.091 -0.077
Total. Sugar -0.098 -0.528 -0.311 0.018 0.109 -0.201 0.632 -0.243
Dietary.Fiber AO.Béﬁ 0.049 0.215 0.129 -0.217 -0.233 -0.091 -0.035
Fat -0.365 0.141 -0.105 -0.105 0.232 0.006 -0.095 -0.059
saturated. fatty.acid -0.326 -0.063 -0.006 -0.283 0,182 -0.335 -0.482 -0.457 20 60 100 140
Mono.unsaturated. fatty.acids -0.309 0.307 -0.213 -0.059 0.255 0.237 0.167 -0.004
Poly.unsaturated.fatty.acids -0.314 0.255 -0.219 -0.136 0.255 0.359 0.188 0.127 _ Energy
Sodium 0.047 -0.534 -0.129 0.233 0.246 0.547 -0.460 0.036
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In the first principal component if you see the largest contribution is coming from energy
and then that is not the only dominant dominant contribution, he would see similar
number protein, carbohydrate, dietary fibber, fat they and the other thinks also
contributing in similar fashion right. So, this is how P C 1 is being determined. And the if
you look at the P C 2 then sugar is dominating in this particular component 52

contribution coming from sugar, then we will look at another other numbers we would



see sodium is also there even sodium is bigger than sodiums number is bigger than

sugars, sodium sugar and then the iron. So, these are dominating the P C 2.

Similarly we look for look at P C 3, then the biggest biggest weight that we can see is
coming from price that is minus 0.789; and then after that much smaller much smaller
weights much smaller weights after that and we can see That point minus 0.31 that is

again coming from sugar in principal component 3.

So, if we look at the principal component one the weights are also with minus sign right.
So, therefore, you know energy and protein. So, this is a mainly signifying PC1 is mainly
signifying the particular principal components which is determined by energy, protein,
carbohydrate fat saturated fat fatty acids many of this contents right. P C 2 we see that is
mainly determined by sugar and sodium. We will look at the P C 3 it is mainly
determined by price. So, P C 3 could be called price plus P C 2 is mainly can be called
sugar and sodium sugar sugar and sodium, P C 1 is may can be you know we (Refer
Time: 13:07) as health plus. So, these could be the new names for these different basical
component the different new dimensions, and since we require first seven principal
components. So, similarly will have to do a similar excises for other principal

components as well.

Now, let us what will do? I will plot the new dimension that we have just computed. So,
let us look at principal component 1 and principal component 2; let us look go back to
the results that we had earlier the proportion of variance proportion of variance by P C 1
and P C 2 is 50 and 16.5. So, let us plots these two dimension and then we can compare
it with the original plotting that we had done earlier. Let us look at the range of particular
variables minus 6.96 23.02. So, you can see appropriately acclimate has has been
specified, let us look at the range for the second variable and you would see that minus
4.14 to 1.49, you can see the appropriately and the why limits have been specified. Let us
change the margin and correct expansion through fire function and let us plot now let us

zoom to this particular plot.



(Refer Slide Time: 14:51)

The marker point has been chose has been chosen as the smaller we have chosen a
smaller marker for generating this plot, now you would see these are the these are the

points for z one and z two .

So, quite different from the case that we had earlier had when be applied principal
component analysis on a energy and customer rating. We saw distribution redistribution
happening from 8713 to 90 and 10, and the and that was also you know without
normalization. Now if we do normalize we can see this kind of scenario. Now variability
that is being captured by just these two dimensions is slightly less in comparison to

previous two models that we developed.

If we want to a further analyzation formation, we can label all these point we can label

all these point by their product name.



(Refer Slide Time: 16:02)
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So, we can make a; we can analyse these a new dimensions further now. So, these are the

all the points have been labelled by their product names. So, now, we want to further

analyse right for example, if as we move a long in the z 1 direction and will look at the

weights, and that for actually contributing for this particular directions.

(Refer Slide Time: 16:25)
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PrinT(rounamoazsrotation, a191ts = 3))

# principal components Analysis after normalization
mod3=prcomp(dfpca2, scale. = 1)

summary (mod3) # 7 pcs account for more than 90% variability
mod3Srotation

print(round(mod3Srotation, digits = 3))

range(mod3$x[,1])

range(nod3sx[,2])

par(mar=c(4,4,1,1), cex=0.7)

plot(mod3sx[,1], mod3sx[,2], x1im = c(-8,5), ylim = c(-5,2),
xlab="z1", ylab="z2", pch=20)

text(mod3Sx[,1], mod3$x[,2], dfb2SProductname(-c(32:34)],
ad) = ¢(1,-1), cex = 0.8)

[parssasssnsasasnsase

1591 @ (Untited)

Console C:/Users/user/Desktop/MOOC January 2018/Dr. Gaurav Dixit/Sesslon 4/

Iron -0.279 0.039 -0.059 0.019 -0.022
Customerrating -0.068 -0.068 0.074 0.037 -0.017
> range(mod3$x[,1])

[1] -6.969443 3.029716

> range(mod3$x[,2])

[1] -4.145245 1.490931
> par(mar=c(4,4,1,1), cex=0.7)

> plot(mod3$x[,1], mod3$x([,2],

+

+
>

Klim = ¢(-8,5), ylin = ¢(-5,2),

xlab="z1", ylab="22", pch=20)

> text(mod3$x[,1], mnd}!x[,%], dfb2$productname[-c(32:34)],

adj = ¢(1,-1), cex = 0.8)
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So, let us look at the P C 1. So, this was the P C 1 and it. So, as we move long to the z 1

direction from left to right, the energy content would actually decrease right. So, you

would see that has move along from left to right the energy content is actually would



actually decrease and then the protein would also protein would also decrease similarly
other carbohydrate fibber. So, as we move along from left to right probably less healthier

options are more (Refer Time: 17:15) on the righter side of this particular plot.

So, this is how we can analyse similarly for the second directions also, we can make
similar kind of analysis. For example, sugar and sodium they dominated sugar sodium
and iron, they dominated the second directions second principal component. So, as we
move from bottom to top and this direction get two dimensions, he would see that these

decrease in these three contents, that is sugar, sodium and iron.

So, therefore, more healthy more healthy cereals would be would slightly be in the
middle in mid section and then left mid section right. So, that is we are probably more

healthier options are there.

(Refer Slide Time: 18:23)
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DIMENSION REDUCTION TECHNIQUES

* Principal Component Analysis (PCA)

— Data Mining Process
¢ Apply PCA to the training partition
+ Predictors would now be principal score columns
+ Apply the principal weights obtained from training partition to the variables in the
validation partition to obtain the scores

X
- Relationship between predictors and output variable is ignored
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So, let us go back to our discussions. Now we look at the principal component analysis;
how it could be used in the data mining process? So, how we can actually applied
principal component analysis in our data mining modelling and it use the dimension to
lesser number. So, first step is going to be applying P C A to the training partition. So,
will have training partition were relation partition and test partition. So, first step would
be applied P C A to the training partition. So, now, will have new predictors, and they
will be you know now we different principal is four columns, they would be new

predictors.



So, the original variables we can we might will not be using further and new principal
new score columns that we saw through that mod dollar x value right similarly for all the
principal components, we can find new values and they are going to be new predictors.
So, as we has been talking about will have new names for also new name for them; as
were for example, we were talking about health plus, price plus, energy plus, kind of new

variables for new principles four columns .

So, now once these we have new predictors, we are ready to build our model on training
partition, but how do we evaluate our model? So, for that we would be requiring
validation data set and test data set. So, the principal weights that be obtained while we
applied P C A to the training partition, the same principal weights can be can be applied
can be used to compute the variables new variables from the validation partition. So, the
validation partition we can apply the weights that we computed from applying P C A to
training partition, can we used to obtain new scores; and then these new predictors can
we used to perform to actually test the model and then refined it, and then test on new

partition that is test partition .

Now, we look further at P C A the, what we have been doing is in P C a is be mainly
focused on numerical variables. So, we generally selected all the numerical variables and
then we applied P C A on them, and then we looked an analyse the results to find out
how many new predictors will have and whether the dimensions are going to come down

or not.

So, those are the things that we looked at, but we look at the way P C A is done, we join
generally exploit the relationship between predictors and output variables that
relationship is generally ignored. So, that is one limitation of this principal component
analysis. So, this particular limitation can be overcome using some other methods. So,
limitation of principal component analysis that it does not include the relationship
between predictors and the outcome variable, that can be overcome using some other

methods. So, these are.

So, we come to our next category for dimension reduction techniques that is data mining
techniques. So, some of the data mining techniques that we would be covering in more

detail in the coming lectures, they can also we used to reduce the dimensions. So, first



one that we are going to discuss briefly is regression models. So, we can apply some of

the subset selection procedure using a regression models.

(Refer Slide Time: 22:13)
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* Data Mining Techniques

- Subset selection procedures using Regression models
* Linear regression for prediction
* Logistic regression for classification
* Regression models can also be used for combining categories (using p-values)

— Classification and Regression Tree (CART)

¢ Classificationtree for classification
* Regression tree for prediction (Using tree diagram)
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So, for example, Linear regression for prediction task. So, for prediction task we can
apply a linear regression. So, there in using the different using the significants of the
coefficient that we get for different variables right, we can find out which of the
important variables and therefore, we can we can get rid of the insignificant variables
and also variables probably having low coefficient value. So, we can also if the we can
also drops some of the values, if the coefficient numbers coefficient values is on the

lower side those variables can also be drops even if that that is significant.

So, now domain knowledge also important, sometimes even though the coefficient value
is on the lower side the variable might be of more importance, but if that is not the case
probably we can drop those variables also. So, we can drop insignificant variable and

some of the significant variables, which are carrying low value.

So, that is how selection subset selection procedures of regression models can we applied
linear regressions, different subset selection method that we will be covering in coming
lectures, can be run to find out the that subset, which is able to explain the model or feet
the data. For classification task we can apply logistic regression, and the same process
can be adopted there as well. We can use we can find out the significant relationships,

and then we can also have a look at the coefficient values and thereby we can determine



which variables to drop and thereby we can reduce the dimensions. We can also look at
which regression models, the subset are explaining most of the variance that we can do

through multiple R square values.

Regression model can also be used for combining categories. So, we can use p values to
actually find out that ah. |If there are you know few if there are few categories for which
we have in sin which are insignificant, had there is category which is insignificant it can
actually we combined with the difference category, it can be combined with the
difference category and the this category can be eliminated. If we have 2 category which
are having similar coefficient similar value had similar coefficient value they have
similar influence on the outcome variable or output variable, and those variables on those

category can also be combined. So, much can be done after analysing the results.

Another technique that can be used for dimension reduction is classification and
regression tree. So, in a coming in a coming session, we will discuss classification and
regression tree in more details ah, but to give you an idea that there is we in this in this
under this technique, we develop a classification tree for classification task and we
develop a regression tree for prediction task. So, while we build this model using
different using full of variables, the large number of variables, in result is going to be a

tree diagram.

So, which would be represent which would be giving us the different classification rules
or prediction values and will also be incorporating the important variables that would use
to build that particular tree. So, if a variable does not show up in that particular tree
diagram, does not figure in the in that particular tree diagram; that means, that particular
variables can directly be eliminated. So, that is how dimension can also be reduced. So,
we can start from a large number of predictors and then some of them can actually be

eliminated if they do not figure in the tree diagram.

Similarly, in the classification and in the classification tree as well we can combined
categories if there is similar kind of if they are coming in the in the in the in the same
branch, and there is possibilities of having you know similar classification rules for both
of them, and probably we can combined they we can combined them. Similarly for
regression tree as well if a particular variable is not coming up in the regression tree

diagram, and also those variables can be eliminated from the analysis.



So, more detail on these two techniques regression model whether it is linear regression
or logistic regression, and how they can we used for subset how subset selection
procedures, can be developed using these models and how classification and regression
discard can be used for this model for dimension reduction, we will discuss when we will

discuss this when we come to the lecture we will discuss this particular techniques.

Now, one difference between principal component analysis and these models regression
models and classification regression tree is that these models they in they account for the
relationship between the predictors and the outcome variable. So, whether it’s a
regression model that, the way linear regression is model, its the relationship between
outcome variables and the predictors that is actually incorporated in the modelling
process. Similarly for logist logistic regression also the, predictors and the outcome
variables there relationship incorporated and any subset selection for this procedures that

are used later on they are based on those relationships so, that being one big difference.

Similarly, in classification and regression tree also, while we develop the tree diagram it
is the it is the relationship between the variables that help us reach to the terminal notes
are leaf notes, and do our classification on prediction. Therefore, it is the underlying
relationship between those variables that is also playing its role and determining the
importants of variables. So, will stop here and in the next section will, I will discuss the

performance matrix so.

Thank you.



