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Now, let us analyze the four Policies. The first policy is to do nothing in the DG and the DD

states. Recall that DG means one machine is deteriorated, while the second machine is good

and DD means both machines are deteriorated. Now, this is an important policy because we

are going to actually derive a lot of these expressions. So, Xn is going to be the state of the

system at the end of the nth day. So, that is as usual, state of the system at the end of the n th

day. 

Now Xn is going to be modeled as a Discrete Time Markov Chain, which state space S given

by this remember, these are these six states: both machines good; one machine is deteriorated,

the other is  good, we do not  make distinction which is  deteriorated which is  good; both

machines are deteriorated; one machine is good and the other machine is bad; one machine is

bad and the other machine is  deteriorated;  and both machines  are bad. These are the six

possible states and the transition probability matrix P is given by this. 

Now, I typically write down the states in the same order GG, DG, DD, GB, DB and BB. In

other words both machines are good; the first one machine is deteriorated, the other is good;



both machines are deteriorated; one machine is good, the other machine is bad; one machine

is deteriorated, the other machine is bad; or both machines bad. I am going to next explain,

how I get some of these probabilities. 

Now, if you look at this, now this one- let us explain this one very briefly. So, if you recall

the probability of going from good to good from one to the next observation is 0.85. So, the

probability of going both machines going from good to good, that means, machine 1 stays

good, machine 2 states good, this and that both events are independent. So, it is 0.85 times

0.85, which is 0.852, both machines are continued to remain good. 

Now, the probability of going from good-good to deteriorate-good; that means, one of the

machines goes from good to deteriorated, and the other machine stays good. So, the machine

that  stays  good,  stays  good  at  probability  0.85,  the  machine  that  goes  from  good  to

deteriorated, goes there with probably 0.1. But, there are two ways that this could happen. So,

(2C1) 2 choose 1; 0.1 to the 1; 85 to the 1. Let me repeat why I get this two, you could think of

it in the following way. The first machine stays the way it is, the second machine deteriorates

or plus the first machine deteriorates the second machine stays the way it is.

So, then you have two times, 0.1 times 0.85, then both machines could have toggled from

good-good  to  deteriorated-deteriorated.  So,  that  means,  0.1  squared-  that  is  pretty

straightforward. Again good-good to good-bad, that means, one of the good machines goes

off and becomes bad, the other good machine remains as good.

But, it could be either. So, it is two times 0.85 good to good, times 0.05 going from good to

bad. Now, then what is the probability of going from GG to DB, that means, one machine

goes from G to D, the other machine goes from G to B. So, that is 0.1 times 0.05, 0.1 times

0.05, times 2 because there are 2 machines. So, one could have gone that or the other. So, it is

(2C1); 0.1 to the 1; 0.05 to the 1. Now, GG to BB is both machines going from good to bad, so

0.052. 

Now, let us look at the second row. Now, from DG, there is no way I can go to GG because a

deteriorated machine will never go to good. So, that is not possible. So, that probability is 0. 

Another thing that could happen is both machines stay the way they are. So, DD machine, D

machine stays with D, that happens the probability 0.75; and then the G machine stays with

G, that happens it probability 0.85. Notice that, they could not have flipped, the D cannot



have become G because that could never happen. So, that possibility is not there. So, only

this is possible. 

Then from DG, you can go to DD. So, the D machine stays at D, which is happens it is

probability 0.75 and the good machine becomes deteriorated with probability 0.1. So, the

0.75 times 0.1. Next, DG you can go to GB, the only way that could happen is the good

machine remained good with probability 0.85 and the deteriorated machine became bad with

high probability: 0.25.

Now, DG to DB is interesting, DG to DB requires some explanation, this one of thing, two

things could have happened. Either the deteriorated machine continued to be deteriorated, and

the good machine became bad, so that is one option. So, that happens is probability 0.75

multiplied by 0.05 or the deteriorated machine became bad and the good machine became

deteriorated, that could also happen, either this or that. So, deteriorated to bad is 0.25, which

is this; and good too deteriorated is 0.1, which is this guy.

So, that is why I have two terms that add up against each other. Finally, DG to BB, that

means, both machines become bad, so that happens with probability 0.05 times 0.25 which is

this.  Notice  that,  the  rows  add  to  one,  if  it  is  not  obvious,  please  go  ahead  and do the

calculation and see that the rows do indeed add to 1. Now, the next row; this is the last

detailed row, the next row is the last row. So, whenever we are in state DD, you could never

go to GG because you can never go from D to G and from D because you are doing nothing,

remember you are doing nothing.

So, you are not fixing anything and from DD, you cannot go to DG alright, and DD you can

stay in DD which happens is probability 0.752 because the D machine stays in D, the other D

stays in the other of D. So, it is 0.75. You cannot go to GB because you cannot go from D to

G if you do nothing. Now, the only thing that could happen is from DD, you can go to DB or

from DD you can go to BB: DD to BB is 0.252 because both machines flip to being bad. On

the other hand, one machine flips the other remains the same, it could happen in two ways

therefore, it is 0.75 times 0.25. 

Now, these three probabilities are one because if you are in state GB you are guaranteed to

call the repair person and you surely going to state GG; if you are in DB, you will call the

repair person and go to GG; if you are in BB, you will call the repair person and next day you

will be in GG. So, you have this P matrix that we have here. 



Now, I can take the P matrix and solve for π values using the same technique we saw before

π=π P, and ∑ π i=1, I used the same method and I can come up with these probabilities. So,

if you use your octave and did your calculations, this will be what you get. Now, these are the

costs that are important to consider. 

(Refer Slide Time: 08:37)

So, in states D, in states GG if you did nothing and everywhere you are doing nothing. So,

when you do nothing, I am going to go back a little bit and show you the costs in the previous

picture. Here if you did nothing, your cost should be this 0, 10, 20 and you would repair these

three states 55, 65, 70, 0, 10, 20. So, this is the states for DG and DD, 0, 10, 20, 55, 65, 70; 0,

10, 20, 65, 65, 70 multiplied by 1000 rupees because these numbers are not just in 10 rupees

and 20 rupees, but it is 10000, 20000. So, the long run average cost per day is 12445 rupees.

So, that is the cost that the company incurs per day under policy 1 on average in the long run. 
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Now, let us see what happens in policy 2, where I would tinker all the time. So, every time I

am in at any state, I would tinker. Now, the first column remains exactly the same as before:

DD, GB, DB and BB. Likewise, GG, DG, DD, GB, DB and BB. Now, the first row does not

change because if in state GG, you typically do nothing right. So, therefore, whatever we had

before here in the first row continues to hold. However, in these two states, we have now

decided to tinker: tinker in DG, tinker in DD

So, therefore, in these two, you will always tinker. So, next day you will always be in GG

state. You tinker and go to GG, tinker and go to GG. However, here you will always call a

repair person. Therefore, naturally like before like we had in policy 1, you are always going

go to state GG. 

Now, if you did the calculations, now this is a completely different P matrix and this one will

calculate to give you this and now remember the costs are different. Now, if you go back to

this table. Now, we are looking at not doing these two, instead we are going to do these two

because we are going to tinker. So, 0, 25, 40, 55, 65, 70; 0, 25, 40, 55, 65, 70: this is policy 2

and the long run average cost is 7945 rupees.
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Now, let us look at policy 3, where you do nothing in DG and you tinker in DD. You do

nothing in DG and you tinker in DD. So, even if one machine is good, you want bother with

it,  but  if  both machines  are  deteriorated,  you go ahead and think.  Now, let  us  see what

happens to the cost. Now, turns out that the first two rows are the same as before because if

you are going to do nothing in a particular state, then that P matrix would be similar to the do

nothing P matrix and where you would thinker, that would look something like the tinkerer

state. 

So, let me just rewrite this and I will explain in a second- DD, GB, DB. Now, remember to

always put down these states in the same order. So, in the first two rows where your state is

GG and DG, you do nothing right, do nothing in DG. Of course, GG always do nothing. So,

you would just write down the first two rows of this guy right: 0.85 and so on and 0.85, 0.75

and so on.

So, you would write exactly that and the others are same as before and you know π=π P and

you solve for your π’s, you get this as the value and now your costs are so. Now, what

happens here is, you will basically do nothing in DG, but you will tinker in DD. So, 0, 10, 40,

55, 65, 70; so, you do 0, 10, 40, 55, 65, 70, you did the calculations, you get 11333. So, this

one is still better than do nothing everywhere, but it is worse than tinker.

Now, let us look at policy number 4.
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Now, this  one is  do nothing in  DD and tinker  in  DG, this  is  somewhat  counterintuitive

because if this is saying that- when I am in a worse state, I do nothing. But, when I am in a

slightly  better  state,  one machine is  good and the other  machine  is  deteriorated,  we will

tinker. But, if both are deteriorated, we do nothing it seems a little bit counterintuitive, you

would think that well you know some type of monotonicity right; that is missing here. Let us

see what happens here. 

Here again, you would go GG, DG, DD, GB, DB and BB, from here you would go to the 

same possible stage written out in the state space: DD, GB, DB and BB. Now, this time you 

would do nothing in this state and this state. So, these two states we write exactly the same as

what we had in the do nothing case. So, this will be the first and the third that gets repeated, 

the second will be the same as the case, where we had tinker in both and therefore you get the

one state here, you get this 1 because of tinkering and these ones are because of repair. 

Now, these become the probabilities and the costs if you look at that, if you look at the cost

now what happens is- instead of this, you would get this cost and this cost because you would

do nothing in DD, but you would tinker in DG. If you did that, your cost would be 0, 25, 20,

55, 65, 70.

So, DG corresponds to 25 and DD corresponds to 20. So, we have to be a little bit careful,

DG corresponds to 25 and DD corresponds to 20. So, I have to write it in this order. So, that

is very important; if you did that, look at the cost- it is pretty low, still not lower than policy



2, which is to tinker in both states, but it is lower than this and it is lower than do nothing; so

that is an interesting result.
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So, now I want to make some closing comments about Markov decision processes, I do want

to say that the optimal policy is policy number 2, and this is to tinker in both DD and DG

states.  A close second is  this  unintuitive or counterintuitive policy number 4,  where you

would tinker in a state like DG, but you would do nothing in DD. 

So,  do  nothing  in  DD  it  sounds  a  little  counterintuitive,  that  is  a  close  second  policy,

something that we did not expect. And if you want to look at this, there are some interesting

issues to consider as closing comments. We only had 4 simple policies to compare, we could

easily do that by enumerating the state space and action space and so on.

Now, there are many things that could happen, the state space could explode, the action space

could become really large, and you would need some significant machinery just like what we

saw in stochastic programming. You would need things like linear programming, you would

need methods like value iteration, policy iteration. 

So, there is going to be a bunch of machinery that you would need, which is a little bit

beyond the scope of this course. All of them and all the extensions that I am going to talk

about now will use what is called a stochastic dynamic programming formulation and for that

you would typically write down what is known as the Bellman equation.



So,  this  is  a  fairly  standard  thing  that  one does.  Now,  one  of  the  downsides  is  that  the

dynamic programming formulation, the state space explode. That is because you really have

to consider all the various possible states that you can be in and the number of states start to

explore, it gets a little bit tricky. 

Now, notice that the policy that we saw here is again stationary and deterministic, that means,

I do not change my policy based on the time of the day or the time of the year if you were and

they are also deterministic: in this state you would tinker, in this state you would do nothing.

That type of a deterministic policy; it is not like you flip a coin, both are fairly standard in

these types of infinite horizon time-homogeneous average cost problems.

Now, one could also derive other results like monotonicity and if you have monotonicity, the

search for optimal solution becomes a lot easier. That is one of the nice features. So, many

times in Markov decision processes, we are not really computing the optimal solution, but we

are looking for  a  structure and once you get  the structure  like  we did today.  So, in  this

example,  we were only enumerating policies,  in other example (s, S), you would try and

solve an optimization problem to pick the right s and right S because you want just look for

all the possible policies. 

Now, you could also look at the discounted cost case, we have only looked at the average

cost case, you could take a look at discounted cost, that means, the value of money right now

is different from what it would be several years from down the line and you can do credit

discounted costs. And then another problem that is very often study is a finite horizon case,

and if you have finite horizon, you might as well have non stationary processes, where there

is a time varying behaviour, a lot of people analyze this for example, people who study- what

should  be  price  a  ticket  for  the  airlines,  this  is  typically  solved  using  these  types  of

techniques. 

And we can also extend a lot of this to continuous time Markov chains, we only looked at

discrete time Markov chain. These are what is called SMDP semi Markov decision processes.

Not only can the time be continuous, the states can also be continuous and in that case, you

write down what is called the HJB equation Hamilton-Jacobi-Bellman and go ahead and try

to solve this problem.

So, there are many different ways to extend this, this is a well-studied, extremely rich in the

literature and this is something that one could do and there are a lot of papers and books



written  about  this  topic.  So,  MDP Markov decision  processes  is  a  fascinating  area,  it  is

essentially in the field of feedback control and there are many examples of this. 

These types of techniques are especially used in solving problems in decision making under

uncertainty. This brings us to the end of the course, I certainly enjoyed presenting this to you

all. I hope we had a fun time listening to this and I look forward to having you in future

courses.

Thank you.


