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This lecture is about Markov Chains for Decisions.
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Markov decision process is the most often used as adaptive decision making tool and this is

what we use for decision making under uncertainty. There are some restrictions, but we will

talk about the Markov decision process as we go along this lecture. Turns out that, we first

need to go and give a quick overview of what is going on and then talk a little bit about

Markov chains because Markov chains is going to be the basic structural part of a Markov

decision process. 

So, if you do not do any controls and just let the stochastic system evolve over time, you will

get a Markov chain. And once we talk about that, we will move to what is called Markov

Decision Process (MDP). A stochastic process is a system that evolves randomly over time;

we will give you some examples very soon.

Think about the number of items in an inventory and then the second example is the day’s

weather, perhaps a value of a stock and a to-do list.
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So, let us draw a little picture. So, let us say the inventory level, we have seen this in the

previous topic- inventory level over time. So, maybe the inventory level is here and then a

new product came in and goes here and then it stays here for a while and then goes down and

goes  down  very  quickly  down  to  0  and  then  you  get  a  little  shipment  that  goes  here;

somebody bought 2.

And then 1 and goes down here and then the reorder goes here, goes down here, becomes

empty and then you reorder and so on. Now, this is the way the inventory system goes about.

Now, if I were to choose unlike the case we had in topic 3, where we continuously observe

the inventory,  which is  what is  happening here.  Let  us say: we observe the inventory at

discrete time points.

Let us say we observe this once a day and then we make a recommendation of whether we

want to do nothing. So, let us say this is the beginning of an end of every day. And at the end

of every day, you look at your inventory level and make a decision. Now, this is different

from what we had before. In the previous case- in topic three, where we were looking at a

safety stock; as soon as you hit the safety stock and you know exactly when that happens

because you are observing it continuously. As soon as you hit the safety stock, you place an

order and then there is a lead time. 

Here we will ignore the lead time, when you could incorporate. Because model becomes a

little bit harder, you will ignore the lead time for now and all we are going to be worried



about is you know we are looking at the system once in a while and make a decision of

should we place an order and if yes how much should we order up to? So, for example, the

first time period, it will come here, you see how the inventory level is pretty high, I will not

do anything. I know I will come back, then end of the next day, I go here I see it looks.

I go here, I see, it looks ok; I go here- oops! The level is 0. So, let me go out and place an

order, I place an order, and then the inventory level keeps coming down and then I go here at

the end of the next day. I see it is here as I do nothing, then I go here and then I see: well, last

time I did poorly by not making the decision here to go ahead and buy. This time I am going

to be a bit careful and I will go ahead and I will buy some and then when it arrives, it goes

here and the next time I do nothing. I again get a little bit complacent I do nothing here; all of

a sudden I hit 0 and then I buy.

So, you make a decision over time about whether to buy something or not. Now, so that is

typically how an inventory level over time, this is a stochastic process because these times are

random and even sometimes if you even consider the lead times and that also is random. 

The second example that we are going to be talking about is if you look at the temperature on

some of your phones- temperature and probability of rain, you will see you know a random

process that will go like this. It will tell you the temperature right now is 30° Celsius and the

probability of rain is 20% and then it will tell you this is right now. This is let us say 1 PM

and then at 2 PM the temperature is 32°C and the probability of rain goes with 10% and then

it goes to say 34°C. Probability of rain is 0% at 3 PM and so on, every hour it gives you a

forecast of the temperature and the probability of rain.

This is a random process because the temperature changes randomly and the probability of

rain also changes randomly over time. However, notice that this is 2 dimensional- there are 2

dimensions here and they are not independent. The temperature is probably correlated with

the probability of rain. I am not saying there is perfect correlation, but there is a relation. And

then if you see the third example that we see here is the example of looking at the value of a

stock and then see what we need to do.

So, if you model the stock price of a particular stock, the stock price could possibly be here

and then go down and up. I am only am drawing like its continuous, but I do know that it

kind of moves discretely over time, but for all practical purposes it is kind of continuous. So,

this is the stock price over time, it could be a quantity that goes like this and then lastly the



example is well I should probably not model it this way. So, let us say you have a “to-do list”

a bunch of items here. So, this is time and then this is your number of items in the list.

So, I have four items in my “to-do list”, I get done with one; I come down to three and I add

two more to my list and then I come down by one, I keep doing stuff, then I get added two

more items, I add one more item. So, I keep adding items into my “to-do list”. So, my “to-do

list”  has a  bunch of items  that  I  keep increasing  and decreasing over  time as they keep

completing the list, I keep going down to one and as I keep adding I go up by one. As we all

know the “to-do list” will never have 0 items- yes that is a joke, but that is in reality though.

Now, let us go back to what we were looking at. So, we were looking at these example.

So,  to remind you- we looked at  the number of  items in inventory over  time,  the day’s

weather, the value of a stock, and the “to-do list”. So, the number of items in inventory in the

example that we saw, we actually observed it continuously and I said what if you observed at

discrete time, which is what we will do at towards the later part of this lecture. You look at

daily  weather,  which  had 2  dimensions.  So,  there  are  2  dimensions,  we looked at  some

forecast into the future. We look at a value of just of a particular stock- it went up and down.

And we were also looking at “to-do lists”, where you are adding items to it. You could even

think of the entire “to-do list” as a stochastic process as supposed to looking at each item and

number of items to list, you could look at each item in the list and that is completely up to

you; some things are easily analyzable, some things are difficult. 

Now, we also need to make decisions. We were basically except for the inventory example,

all the other 3 examples- I was only telling you something about how the system is going to

evolve over time randomly and that is called a stochastic process.

So, even in the inventory case, you know we are probably going to be interested in situation,

where let us say: you observe and then you take some actions and that yields a certain pattern.

Now, I am going to talk about that in a little bit, but you could think of a whole bunch of

decisions. We talked about this decision, we are saying: we observe the inventory level and

then decide how much to order. So, you look at it here and then you are saying: ok, I am here,

how much do I want to order, I want to place an order for these many items, when I was here.

So, at every stage whether or not to get anything and if yes how much to order. So, when to

order and how much to order. Now, the key difference; one more time it is very important to



understand the difference between this and earlier. Earlier, we were continuously observing,

here we are observing at discrete times called periodic review and continuous review is what

we saw earlier. In the temperature case, you might decide whether or not to take an umbrella

for the day. You look at this and say: ok, this is my process, well it looks like a low chance of

rain. I look outside- ah! It is not raining, I won’t take an umbrella. On some other days you

might say: I will take an umbrella even though the probability of rain is only 20 percent.

So, that depends when you know you are wearing a nice piece of suit and pants and you are

thinking maybe I should take an umbrella. So, it depends on your state information as well as

what is going on outside. Now, in the stock price situation you can decide whether or not to

buy a stock or sell a stock. When the stock prices are high, people typically buy and the stock

prices are low they sell, which a lot of people say is not the correct thing to do. You should

actually be selling when the price is high and buying when the price is low.

So, that you can make a huge profit. But, you know in practice what happens is that generally

does not. In terms of “to do list”, you can decide which of my items the “to-do list” should I

work  on  next  and  that  could  be  a  decision  assuming  that  you  are  not  very  good  at

multitasking, we only do one thing at a time which by the way is what I would recommend; is

to figure out which one do I work on next. So, these are some of the decisions like I said-

when to order and how much to order  or whether  to  order  and how much to order  and

whether to take an umbrella or not, in the rain case or whether to buy or sell or do nothing to

a stock right?

You do not have to do anything either at some time and you have to look at the “to-do list”

and see what to do next. So, these are examples of actions. So, the state is evolving randomly

over time. So, that is one word we will see a lot in this lecture. And decisions are what are

called actions. So, you take an action and that decision could be impactful for not just now,

but also into the future. So, that is an important aspect. So, when we model these things, we

need to be concerned about not just  my immediate  decision.  So, you should not be very

myopic. There are my needs; right now are these, but you need to think about the long run.

Let me give you an example, let us say you are tired and aged like I am and you go through

what  is  called  midlife  crisis  and  you  are  thinking:  oh  boy,  maybe  I  should  buy a  very

expensive car. Now, when you buy a very expensive car, it does satisfy your immediate need.



However, you know this might be a terrible decision when it comes to your future. So, you

have to make these decisions judiciously- not being too myopic, but looking at the long run.

So, the objectives typically in these situations are some type of a minimization of a function,

which is usually the expected cost over time, usually. And in control theory, such problems

are falling under what is called “closed loop feedback control”. So, you observe the state and

then you have a controller, it looks at the state and then it performs an action. So, this is the

system and it gauges the state of the system and it will decide what control action to take. So,

this is commonly studied in the field of control theory. So, what we will do is, we will first

study the stochastic processes then two lectures later, we will talk about taking actions.

(Refer Slide Time: 12: 57)

Now, next thing we will talk about is a discrete time stochastic process. So, we are going to

observe a system. So, now we are not taking any action, we are only observing the system

and we are saying: we are going to observe the system at discrete time points, so that means,

every hour or every day or every minute or every nanosecond depends on how dynamic your

system is. You may not observe an inventory system every nanosecond. On the other hand,

you  know there  are  systems  which  is  no  point  and  let  us  say  observing  the  number  of

messages in a queue in a computer server. Let us say every 5 days, I mean that is too long for

considering that dynamic. 

So, you need to pick a good time frame and observe the system. Usually the times between

observations are constant, but that is not a requirement. You could observe at non constant



times,  you just have to be very careful. When you make inferences,  you have to be very

careful,  when you observe them at non constant time. But, more often than not, I would

probably say 8 out  of 10 examples  that  you would see,  you would be observing at  in  a

periodic fashion and that is why even the inventory example is called periodic review.

So, the example of inventory comes next. So, let us say: we observe the number of products

of a specific item in the inventory at the beginning of a day. So, the observation times are

specified and they are constant at the morning of every single day, I am going to figure out

how many items are in inventory. We will say later as to why we observe at the beginning of

a day and not at another time. For that, we will wait for a little bit. Now, here is what is

important. As you add products to the inventory, this is usually because you either produce or

an order arrives.

So, it is either a production inventory system, where you are producing and adding to the

inventory or you are ordering and adding to the inventory. That is how usually products are

added to the inventory. So you go up, when you add stuff to the inventory or sometimes even

when someone returns an item. So, they come back to stores saying: I do not like this item, I

would like to return it. 

So, that is another way that the inventory level goes up. Then as the items get consumed, the

inventory level goes down because no reason for you to believe that inventory level goes

down one by one like I had shown in the picture, you could have a situation where somebody

comes and buys multiple of an item.

So, the inventory level goes down whenever someone comes and buys. Now, we will take a

very specific example and this example is just for illustration. We are going to look at a small

one, where we have a washing machine brand in a store. So, there is a specific brand and a

specific type of washing machine in a store. The store adopts the following policy or rule.

This is their rule: if the number of washing machines on the floor is below two; by the way

they are observing it on the night or at the end of a day.

So, at the end of each day, the store manager walks around and then comes to this particular

brand of washing machine, looks at the floor and sees how many washing machines they

have  that  are  unsold.  If  that  number  is  below 2,  then  they  will  go  ahead  and call  their

warehouse and they will make sure that the order enough, so that there are 5 of them in the

morning of the next day; they can make a call see that there are 5 in the next day. If the



number of washing machines in the floor is 2 or more, they would do nothing. So, number of

washing machines is 2 or more, they would do nothing.

So, let me just repeat what I just said. So, the number of washing machines is below 2, they

would order, they would order enough so that they have 5. Essentially there are two possible

numbers, it is either 1 or 0. If it is 1 they will order 4, so that the next morning they have 5. If

it is 0, they will order 5. So, the next morning there is 5. So, those are the only two things that

is done.

Now, we are going to make an assumption to make or model tractable although in practice

this is not something that is required. We are going to assume that the washing machines are

not returned. Somebody comes and buys the washing machine typically keeps it and there are

also no back orders. By that what we mean is let us say there are 0 washing machine in the

floor. 

If a customer comes in and asks for a washing machine,  we are not going to allow back

orders, that means, they pay for the washing machine and then they come and pick it up when

they get one. That is not going to happen, this is just again for modeling convenience. I am

not saying that this never happens in real life, but in a washing machine situation, it is not a

bad assumption. 

Now,  this  part  is  important  and I  will  say  this  multiple  times:  the  demand for  washing

machines are 0 or 1 or 2 or 3 or 4 or 5 in each day. So, maximum of 5 washing machines are

demanded each day and a minimum of 0 washing machines are demanded. The probabilities

respectively are 0.2, 0.3, 0.25, 0.1, 0.1, and 0.05. This is the probability that in each day this

will be the demand for washing machine. So, each days demand looks like so.
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I am going to next draw a picture to show you the evolution of the system over time. So, this

is t. So, now, you are observing at the end of each day: 1, 2, 3, 4, 5, 6, 7, 8, So that is just 8

days and then the inventory level. So, let us say it is at 5 in the beginning, 4, 3, 2 and 1. So,

we start with 5 let us say and then it goes down to 4 and it is at 4 and then here you decide: I

will not do anything, we let it go. Then it goes down to 3, and it stays at 3, I am not going to

do anything. The next let us say it goes down to 2 and then goes down to 1. Then we say:

oops! There is only 1. Let us go ahead and buy, the next morning I am at 5. Then, there is one

demand of 1, demand of 2, demand of 3 and then you observe: oh! OK, we are still at 3, we

are ok.

Then you will go from 2 to 1 to 0 and there will be nothing. So, there is any demand here,

these  demands  are  lost-  here  are  lost.  Then,  you  come here  and  then  you  order  5.  So,

whenever you place an order, the next morning you will have 5. Then, let us say it goes to 4,

3 and then you observe here and you do nothing, then it goes down to 2 and then you do not

order right. Let me just redraw that you order it at this line; the order and next morning you

get it. Then, it goes on like that, do nothing and then keeps going on.

So, in these situations you do nothing. Here, you place an order and then here you do nothing,

here you order, here there is nothing and here you order, here you would not order. Now,

another important thing is: why are we observing the system at the morning of a day and not

in the evening?



So, if you look at in the evening times, your stage could be 0, 1, 2, 3, 4, 5 because you could

have come as small as 0 like here or it could be as high as 5. These are the 5 numbers that

you are going to see.  Especially,  if  you started here initially  with 5,  which makes sense

because maximum is 5. Of course, you could think of a never reaching 0 and do some other

cool stuff, which I completely agree. Now turns out, many times they will not do that; we will

hit those items in a little bit, but think about the following: the maximum you are ever going

to be is 5.

However, in the morning, the minimum you will be is 2 because if you are less than 2; if you

were 1 or 0, then for sure you would have placed an order so that the next morning you are at

5. So, it is either going to be 5, 4, 3 or 2. If it is 1, the next morning it is going to be at 5. If it

is at 0, the next morning it is going to be at 5. So, you are really seeing the system in the

morning at only 4 states. However, if you observe the system at the end of the day, you will

see the system in 6 states: 0, 1, 2, 3, 4, 5 and then the morning it is 4 stage. Normally, we like

to have as few states as possible because that is good modeling practice. But, you could have

just solved this problem assuming that it is actually equal to I mean it is observed at the end

of the day, you just have 2 more states. 
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Now, let us see how to model this. This system is modeled using what is called a Discrete

Time Markov Chain. So, this is a very special type of stochastic process. It is observed at

discrete times in our case at the beginning of each day and the states are also discrete. We see



the system in states like 2, 3, 4 and 5 is a hand countable discrete. You could have stochastic

processes that are neither discrete time nor the states are discrete.

For example the amount of water in a dam could be a stochastic process, which is observed

continuously and not a discrete time. It is continuously observed and these states are also

continuous; the amount of water in the dam is a continuous quantity. So, you could have

something like this  as well.  So,  we are in discrete  time Markov chain.  It  is  going to  be

interested only in discrete states and discrete time processes. Besides that, there is a property

called Markov property that we will talk about later, which is why it is called discrete time

Markov chain.

So, we will model the inventory level that we saw as a discrete time Markov chain and then

we will talk about the Markov property later. So, we are going to use this letter X n now in the

spirit of random variables, where you use an uppercase X to denote something that is random;

here too the number of washing machines that you will see in inventory at the beginning of

the nth day is actually a random variable. However, unlike the IID random variables, here the

random variables are not independent and identically distributed.

 So, X1: if you know that X2 depends on X1, it depends on how many I have the previous day

in order for me to figure out what I am going to have the next day. So, these are random

variables, but they are dependent on each other. Xn is called state of the system- that is the

state.

So, when you make an observation- what you observe is a state of the system. The observed

quantity during the nth observation is called a state and that is why I call it Xn. The subscript n

is the nth observation. Then, in our case like I said a little while ago: Xn is always a number

between  2  and  5  because  you  observe  in  the  morning,  after  you  have  replenished  your

inventory if any. Then, you are either going to be at 5 because you were at 5 and you did not

sell anything the previous day or you were at 1 or 0 and you place an order and you will be at

5. You will be at 4, 3 or 2 and those are the only possible states you can be in the next

morning.

You will never be at 1 because if you are at 1 you would have already placed an order and the

order would have come. Although I did not state it explicitly, we do assume that whenever I

place an order, the warehouse is going to have something to deliver. We will never be in a

situation  where the warehouse runs  out  of  items.  Now, that  is  a multi-echelon inventory



control problem, which is another important problem studied by a lot of people. So, anyway

this thing: 2, 3, 4 and 5 is what we call state space. The state space is the set of all possible

values that Xn can take.

Now, remember that the demand is 0, 1, 2, 3 or 4 or 5 with probability 0.2, 0.3, 0.25, 0.1, 0.1

and 0.05. So, what we want to do is, we want to map the transition from 1 day to another. So,

this one let us say the morning of the nth day, this is the state. This is morning of the n+1st

day, you observed the morning of the nth day and the morning of the n+1st day. 

So, let us say in the morning of the nth today, I am in state 2, that means, I have 2 items at

inventory; what could happen? Well I could have a demand of 0, if I had a demand of 0 with

probability 0.2, then the next morning, I will be in state 2. Today you have 2, I had demand at

0 then the next morning I am guaranteed to have 2 items in inventory and that happens with

probability 0.2. So, all these numbers inside here are probabilities. Now, if I were at state 2

today morning, tomorrow morning there is no way I will be in 3 or 4.

Why is that the case? Well, the worst I could be in at the end of the day today is 1 or 0 right;

that is all I could be. And then that happens, the next morning I am guaranteed to be at 5. So,

there is no way I can go from 2 to 3. I can only go from 2 to 5. So, the probability that

happens is 0.8; 0.8 essentially is equal to 0.3+0.25+0.1+0.1+ 0.05 and why is that the case?

Well, if I had a demand of 1 or 2 or 3 or 4 or 5, I will immediately go to 5 the next time I

observe it. So, today when I observe and I observe the system is in state 2 that is what it is

here right; we started with that and then if I had a demand of 1, I will go down to 1.

If I had 1, I will order 4 more and I will be at 5 that happens with the probability 0.3. If I had

2 and I had demand of 2, I will be down to 0. I place an order for 5 and I will be up at 5 the

next day. Then, if I had 2; I had a demand of 3. Now what happens is the demand of 3, 2 of

these will get washing machines, the third one’s demand will not be fulfilled. Still the next

morning you will be at 5. Likewise, if I had a demand a 4 or 5, 2 or 3 people will be rejected,

they will not get the washing machines and then the next morning it will be at 5. Let us move

to state 3. From state 3, here is all that could happen. If I had absolutely no one coming and

buying anything, I will remain in state 3.

I will remain in state 3 with probability 0.2, which is the probability of 0 demand. If I have a

demand of 1, I will come down to 2 which happens with probability 0.3. And then, if I had a

demand of 2 or more then I will place an order and the next morning I will be in state 5 and 2



or more has a probability of so, it is these guys added together and that is 0.5: 0.25 plus 0.1,

0.35, 0.45 and 0.5.

So, with probability 0.5 we will go from 3 to 5. Let us look at state 4. In state 4 if I had 0

demand, I will stay in state 4 that happens with probability 0.2. If I had a demand of 1, which

happens with probability 0.3, I will go to state 3. If I had a demand of exactly 2 that happens

with probability 0.25, then I will go to state 0. Now, if I had a demand of 3, 4 or 5, I am

guaranteed to go to state 5 that is because if I go down to 1 or 0, I will surely have to buy.

Now state 5 is a little bit more tricky. So, in state 5, one of two things could happen here.

This guy is equal to either I am in state 5 and I did not sell  anything that happens with

probability 0.2. I am in state 5, and I did not sell anything or I had 0 demand.

On the other hand, if I had also a demand, so this is demand of 0. If I had a demand of 4 or 5

with probability 0.1 and 0.2. So, this is demand equals 4 and this is demand equals 5. If I

demand a 4, 5 or 0, I am going to go back to 5. This is crucial, we never had this in the other

states and if you add them up that probability is 0.35.

Now, this guy 0.3 is the probability that will have demand of 1, which is right here or if I

demand of 2 with probability 0.25, I will go to state 3. If I had demand of 2; trigger the

number right now actually 3 with probability 0.1 then I will go to state 2. So, that those are

my transition probabilities.
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Now, I could write this exact same information in the form of a matrix. So, I am going to put

down 4 numbers 2, 3, 4 and 5. All I have done is- I have taken these 16 numbers: 0.2, 0, 0,

0.8, 0.3, 0.2, 0, 0.5 and so on and then I put it down in a matrix form and I call that matrix P.

P is what is called a one-step transition probability matrix. Now, we sometimes omit the word

one step because that is the default: one observation, the next observation.

So,  this  is  the  current  observation  and  one  in  the  top  is  the  next  observation.  So,  the

probability of transitioning from one to the other is written in the P matrix. Now, notice that

these numbers 2, 3, 4 and 5 is the state space. So, this is the state space and one of those

numbers  is  a  state.  So,  you  always  write  it  in  this  form.  So,  P  is  called  the  transition

probability matrix or the one-step transition probability matrix.

So, you take it and put it in a matrix form like this. We could instead also depict it in a figure.

So, it is like this. So, from state 2 what could happen: well, I could have one of three things.

Either I could remain in state 2 with probability 0.2- that is this guy or I could go to state 5

with probability 0.8.

So, what I do is I take 2 and then I put an arrow back to 2 or another arrow to 5. So, I write

this as 0.2 and this as 0.8, then what I do is I am in state 3. So, from state 3, what could

happen? From state 3, either I could go to state 2 with probability 0.3. I can remain in state 3

with probability 0.2 or I can go to state 5 with probability 0.5. From state 4, I can either

remain in state 4, go to 2, go to 3 or go to 5 from 4 if I remain in 4 the probability is 0.2.

If I have to go to 3, probability is 0.3. If I have to go to 2, it is 0.25 and then if I have to go to

5, it is 0.25. And finally, from state 5, I could either remain in 5, go to 3, go to 2, go to 4 from

5 to 5 the probabilities 0.25. From 5 to 4, the probability is 0.3 and from 5 to 2 the probability

is 0.1 and that information is put down in this great transition diagram.

So, we put that down in the transition diagram. So, that is our situation, we could model;

these  transitions  are  the  way  the  stochastic  process  evolves  over  time  either  using  the

transition probability matrix or using the transition diagram. Both have their own pros and

cons, you do not have to do both, but it will be good idea in the beginning to do both as far as

possible. It is also important to not draw arcs, when the probabilities are 0. So, for example, I

do not have an arc from 3 to 4. So, typically we will not draw an arc from 3 to 4 and that is

because the probability is 0.



So,  you  never  draw  an  arc  when  the  probability  is  0.  Now,  notice  that  the  transition

probability matrix, the transition probabilities themselves do not depend on the past state. So,

for example, I do not care how much inventory I had 2 days ago or 10 days ago. For me to

predict how much I will have tomorrow, all I need to know is how much I had today. So, it is

called a one-step transition and it also does not depend on the past and that property is called

the Markov property.

One more time, let me quickly repeat. The probability that tomorrow I will have 5 given that

today I have 4 is 0.25. It does not depend on what was there yesterday, what was there the

day before, what was the other day before that and so on. That property is called the Markov

property. 

Now, once all that is satisfied, we say that the washing machine inventory system can be

modeled as a Discrete Time Markov chain (DTMC) and is written in this format. It is all

values  of Xn for  n  greater  than or equal  to  0,  with state  space and transition  probability

matrix. So, this is how we would model something as a discrete time Markov chain.

Thank you.


