
Introduction to Data Analytics 

Prof. Nandan Sudarsanam and  

Prof. B. Ravindran 

Department of Management Studies and  

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module - 08 

Lecture - 40 

What is Big Data? 

A small introduction 

 

(Refer Slide Time: 00:14) 

 

Hello and welcome to the 2nd module on Big Data. That is we saw earlier that the 

variety and the volume of data; requires has to have a new paradigm for handling all the 

computing. And one of the most popular paradigm that is used for handling big data 

computation is Map-Reduce. So, this was a programming model that was pioneered by 

Google which were reusing initially proprietary implementation. But later on a Hadoop 

an open source platform, that implements Map-Reduce became very popular. And so, in 

the next few slides I will give you a very brief on introduction to Map-Reduce. 



(Refer Slide Time: 01:04) 

 

So, Map-Reduce as we will see, is a very intuitive approach to parallelize computation 

typically on commodity hardware. But the big problem when you are using, especially 

using commodity hardware is that machines tend to fail a lot. So, fault tolerance becomes 

a big problem. So, for example Google runs typically a million machines in one of the 

data centers and assuming on average 3 years lifetime for 1 machine. You would expect 

about 1000 machines to fail per day. So, Hadoop is a distribution frame work, that 

fundamentally uses Map-Reduce as that computing paradigm, but on top of it takes care 

of data distribution, communication, and fault tolerance; and makes it very convenient to 

use this kind of a distributed; set up and solving everyday problems. And hence Hadoop 

is being wildly deployed commercially, and variants of that are continuing to be very 

popular even today. 



(Refer Slide Time: 02:17) 

 

Let us look at the Map-Reduce computing model. The Map-Reduce as you can imagine 

consist of 2 stages: the map stage and the reduce stage. And in between there is a group 

and redistribute phase. So, the map stage, so the each mapper who runs on an individual 

machine takes a block of the data; that is you have to originally process, extracts some 

information from the data and output these as key value pairs. So, the key as you know, 

as identifier the value is any value that you would like to send along with the key. So, we 

will look at examples later. 

And then before sending to the reduce stage, we sort and shuffle all of these key value 

pairs and you group them by the keys. So, that all the pairs which have the same key 

values, will go to the same reduce stage. In the reduce stage you essentially compute 

aggregate statistics corresponding to the key. We could add things up; we could 

summarize them, we could transform them, we could do any kind of filtering that you 

want based on the key, whatever it is we can compute aggregate values based on the 

keys. 



(Refer Slide Time: 03:45) 

 

Look at this an example of a very simple word count, it is like the hello world of the 

Map-Reduce programming. So, let us say that you have a document. So, what you would 

do is you would divide the document into different blocks as shown here. So, the 1st 

block I have colored it red, the 2nd block green and the 3rd block blue. And we send it to 

the different mappers. So, what the mapper does is? It reads each word in the document 

that outputs that as a key and the value as the count of the word in the document. So, 

every time it encounters a word, it just going to output it as that word with the count of 1. 

So, the red mapper is going to output; concept, one, of, one; and then the green mapper is 

going to output variety of things on this case is going to say for one, and concept one. 

And the blue marker again outputs for one, various one, weighted one so and so forth. 

So, in the group stage what happens, you group things by the keys. 

So, all the key value pairs which have concept of the key get grouped and they are send 

to one reducer, likewise all the key value pairs which have for as a key get grouped and 

are send to another reducer and so on so forth. And finally, the reduce stage aggregates 

all these counts regardless of which mapper they come from and then outputs the total 

count. So, in this case you would get (concept 2) (of 1 for 2 various 1 and weighted 1. 

This is very simple way of doing word count and your document could be very large as 

long as we have sufficient number of machines we can compute this very efficiently. 

That is not only in working with documents and the other things. Even simple items, 

even simple computations is you would have thought they were straight forward can 

become complicated when you are dealing with it scale. 



(Refer Slide Time: 06:01) 

 

So, here is an example I would like to compute degree of a node in a graph. On very 

large graphs computing even degree of a node becomes little harder. Why is that, because 

the data itself is not available to you at one time? Suppose I am trying to build the graph 

as of who called who. So, I am going to get things like A called B at time t and spoke for 

m minutes. So, that is an event that arrives to me after the call has finished. So, at no 

point of time do I have all the calls of A, stored in some place and we just going to find 

the degrees. It is not like a single graph that already being constructed firm. Or if you 

could think of trying to create some kind of an interaction graph on Facebook; so user x 

posted on the wall of users y. Now these events even if they are available to you post 

facto that are so numerous that aggregating them and to finding the degree of the graph is 

could take a while. So, you could actually use Map-Reduce to efficiently aggregate the 

each event into a graph.  



(Refer Slide Time: 07:12) 

 

Here is a simple program that would do now. So, the mapper essentially takes each edge 

event, each event, each interaction could be the posting of a message on Facebook; could 

be the making of a call, takes each of those events and then it creates 2 key value pairs 

for every event. That has of A call B it will say, A 1 and B 1. and on the reducer 

essentially now takes in every event or every key value pair that have the same key; that 

essentially means is going to gather all the node A’s. Add up the events corresponding to 

the node A it will output the degree of node A. Fairly simple, fairly straight forward and 

so you do not really have to create a adjacency matrix or adjacency list representation of 

your graph. We will be able to answer to queries like beginning. We can stick with the 

edge list representation and still answer these kinds of queries. 



(Refer Slide Time: 08:19) 

 

So, let us look at some other questions that not necessarily need Map-Reduce; but 

become harder when you are looking at large data. So, you looked at k nearest neighbors 

in one of the earlier modules. So, how would you find k nearest neighbors, if you have 

huge volumes of data? So, linear search is impossible; because any index structure 

should be small enough to fit into memory for you to do linear search. That is not going 

to happen if data is very large. So, there is a new approach for finding neighbors in data 

call locality sensitive hashing introduced by Andrei Z. Broder and others. 

So basic idea here is to, find hash functions. So, you remember hash functions, they are 

functions that take a key as an input and then the hash it into one of n buckets. So, here 

what we do is? We want to find hash functions, such that 2 elements x and y, if their 

distance is less than a certain threshold the hash to the same buckets or same bin. Two 

elements, x and y; if the distance is greater than a certain threshold, then x and y hash to 

different bins; and we would like this to hold with very high probability. We would like 

this to hold for sure, but then it is hard to get something that will work always. So, you 

would like to hold for this to hold with very high probability. So, now, if I want to find if 

y is nearest neighbor of x, then all I need to do is look through the bin into which x 

hashes. 



(Refer Slide Time: 10:02) 

 

And since this is only with very high probability, so you might actually miss your nearest 

neighbors. But you will certainly get some neighbors that are close enough because since 

the data set large, even close neighbors are usually sufficient. So, depending on the kind 

of distance function that, you want to use on your data. If you remember we talked about 

different distance function in the various neighbor depending on the distance function 

you want to use on your data; you are going to have to define different hash functions. 

And so for example, if you want to look at distance measure between sets; this has 

groups of words and so on so forth. You probably like to usage the Jaccard distance, 

which is 1 minus the size of intersection by the size of union. Or if you could say 

Euclidean distance between points or between vectors you could want to see cosine 

distance; and for all of these people have worked out what are appropriate locality 

sensitive hash functions. 

So, we are not going to get in the details of the locality sensitive hashing, just wanted to 

give you a feel for how hard it can be, when you are looking at large volumes of data. 

Even what you thought is simple operation become harder, when you are looking at large 

volumes of data. 



(Refer Slide Time: 11:19) 

 

Here is another example; we talked about frequent pattern mining and association rule 

mining. Imagine counting frequent items in amazon’s transaction data; we have millions 

of transactions a month. So, just blindly running apriori is just not going to work. So, we 

need a different approach to the problem. We can still use apriori property, but we have 

to think of how you would handle the memory more efficiently. 

(Refer Slide Time: 11:46) 

 

So, here is a very simple approach, to do distribute counting; you divide baskets 

randomly among compute nodes. So, here we are talking about market basket data. So, 

essentially what I mean here is the transactions are randomly divided among all the 

nodes you have. You run apriori in each computing nodes separately. And whatever turns 



up as frequent item sets in each of those nodes are now candidate frequent item sets. So, 

what we have to now do is, go back and count the actual frequency of these candidates 

item set; because the original candidates were determined on a small subset of the data. 

You will have to go back and count the frequency on the entire data to determine if these 

candidates set are frequent. 

So, remember that when you are doing this in the distributed fashion the threshold that 

you are using for defining frequent item set should be lower. So, if you are splitting your 

data at 10 ways then the threshold that you had for frequency should be lowered by 10 

times. So, once you have this candidate frequent item sets you do not have to count it in 

a single machine, you could still do this in a distributed fashion. So, again each node will 

count the frequency of just this one candidate item set and then at the reducer we could 

basically combine the frequency reported by each node, and then report frequency of the 

item set on the entire data. 

(Refer Slide Time: 13:31) 

 

So, there are other computing models; I just spoke about Map-Reduce and this top. And 

the other thing has Spark which is Map-Reduce variant with local memory and then there 

are GP-GPUs, which are multi core massively data parallel computations. And then there 

are other models with shared memory multi core repetition. So, a depending on what is 

the use case that you have, we will have to use different computing models. 

 It is not that Map-Reduces one solution for all method. So, depending on the solution, 

depending on the problem that you have, you will have to pick the computing model that 



the shows you. 

(Refer Slide Time: 14:15) 

 

One thing which I would like to point out is that data visualization is still a challenge for 

big data. So, visualization is a challenge for normal data analytics, but it is a challenge 

for big data. So, people are working on adaptable interfaces or interactive visualization, 

but more often than not people are still trying to fit old visualization ideas to big data and 

that is not working. So, it is very active area of the research and several new generation 

methods are needed here; I just wanted to draw your attention to the fact that it is 

something that you could work on. 

(Refer Slide Time: 14:54) 

 



So, in summary; data analytics has matured to a certain level and so now, people are 

looking at big data challenges. So, it is some sense evolving to a new discipline of data 

science, where just the analytics techniques are not themselves sufficient, but we need 

more understanding from the modeling front. It is very exciting time to be in this space, 

availability of vast amounts of data and the internet of things like picking up as going to 

be a lot of work, more data available. The new computing models and that could very 

well be a high impact on society if you are able to come up with solutions, handle make 

sense of this big data.  

That brings us to the end of this module. 

 


