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Hello and welcome to the module on back propagation or how you are going to train 

artificial neural networks and determine the weights. 
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So, to keep things simple, let us start off with a single neuron and that is going to have a 

logistic sigmoid as the output function. So, you are going to write here fˆ(x) is = b + w
T
x 

and then, you pass that through your sigmoid function o. So, o in this case would be the 

logistic sigmoid, where we will say o(v) = 
1

1+ 𝑒−𝑣. So, we saw this in the last module, so 

the error measure that we will be using is the squared error. 

So, , the excepted error w is going to be summation i = 1 to n, where n is the number of 

training data points that you have of the squared error for each training data point. So, 

the way we are going to use this for changing the weights is essentially to compute the 

gradient of the error. So, essentially that will be the error * the derivative of the output 

function * (- xi). 



It is essentially taking the derivative of this with respect to the w function. Once, you 

have computed the gradient of the error with respect to the weights, then we essentially 

just change the weights in the direction opposite to the η times the gradient of this 

weights, where η is the essentially the step says parameter. So, this was fine when you 

have a single neuron. So, what about the case when you have layered networks like this? 
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So, this is our standard three layer neural network. So, the first layer is essentially just 

the inputs. So, the second layer of neurons takes in the inputs and computes the output, 

these are called the hidden neurons that is we discussed in the last module and then the 

output layers finally, take the output from the hidden units, again do the appropriate 

transformation and give you the final outputs. So, here we will denote the hidden layer 

outputs by h and h is given us g of the weighted summation of the inputs and let me 

introduce the temporary variable here called t, which essentially is the summation of the 

outputs of the hidden units and f is finally, the transformation o of the outputs of the 

hidden units. 

So, one thing to note here is that, so I have used different functions g and o for the 

hidden layer and the output layer and typically for two class classification problems both 

g and o are logistic sigmoid as we saw earlier. So, g as well as o would be of the same 

form 
1

1+ 𝑒𝑣
, but then if you are having a regression problem you can essentially use the 

same setup that we have here, except that o would be linear for the regression problems, 

so in which case o would be essentially just passing on the inputs that it is getting. 



So, suppose I have this multiple layers, how do I go about finding the weights of this 

standard three layer output? So, in some sense finding training rule for w2 is not very 

hard. So, w2 if you think about it, it is just like a single neuron network. So, I can just 

take all the weights that come to f1 and then, essentially use the same rule that I used 

earlier here for a single neuron. I can use the same rule for training f1, except that instead 

of xi I will be using the output h, so that is clear. So, for finding w2 I really can just stick 

with what I did earlier. 

(Refer Slide Time: 05:15) 

 

So, I am going to write that here again just for clarity sake. So, I have rewritten this in an 

appropriate fraction for working with this multi layer networks. So, I am going to look at 

the gradient of the error with respect to a single weight that runs from the m
th

 neuron 

here to the k
th

 output neuron, this weight runs from the m
th

 hidden neuron to the k
th

 

output neuron. So, this is essentially the k
th

 output - the prediction given by the neural 

network. So, that is essentially our error times the derivative of the output function of the 

k
th

 neuron with respect to the input that it receives times the input that is coming on the 

m
th

 line, which will be essentially h
i
m. 

So, if you think about it that is exactly the update that we had here except that I have 

change the notation to apply to the second layer weights in the three layer network. So, 

this we can just get from the single neuron update. So, what we do about the first layer 

weights? So, let us see how you will do this, this essentially uses the very simple idea of 

chain rule from differentiation, I am going to take a very specific weight here. So, I 

would like to find the derivative of the error with respect to the first layer weight that 



runs from the l
th

 input neuron to the m
th

 hidden neuron. 

So, I am just looking at this one weight here, we are trying to find out what is the 

gradient of the error at the output with respect to that one weight. So, I can rewrite this as 

follows, so the derivative of the error with respect to the first layer weight is essentially 

the derivative of the error with respect to the output of the m
th

 neuron times the 

derivative of the m
th

 neuron with respect to the weight. 

So, this makes sense, because the weight to the m
th

 neuron affects the output only via the 

output of the m
th

 neuron, so it affects the overall output of the network only via the 

output of the m
th

 neuron. So, I can essentially apply the chain rule here. So, let us take 

this bit by bit. So, if you look at this, so you can see that this is immediately obvious, 

because this is the function we are talking about here.  

So, if we take the derivative of h
i
m with respect to wlm, then you essentially going to get 

the derivative of g times the derivative of this expression with respect wlm which will just 

be xl
i
. So, this is the second term in the derivative. So, the first term in this derivative is 

the one that requires a little bit more work, so let us see how we will do that. So, I am 

going to try and evaluate that expression here, so if you think about it, so the different 

ways in which the output of the m
th

 neuron can influence the overall error is essentially 

through each one of the output neuron that m
th

 hidden neuron connects to. 

So, it can influence the error through this output or it can influence error through this 

output. So, we are essentially summing over all possible outputs k of the gradient of the 

error with respect to fk and the gradient of fk with respect to the output of the hidden 

neuron. So, you can easily evaluate the derivative, so the derivative of the error with 

respect to fk. So, if think about it, so this is the expression we have. 

So, the derivative of the error with respect to fk, so going from this expression derivative 

of the error with respect fk going to be... So, negative of yi - f ̂kxi, because we are taking 

derivative with respect to fk here. So, we do not have to worry about the further terms 

that constitute fk. The second term is concerned that is essentially looking at this. So, 

derivative of fk with respect to h
i
m’s essentially the derivative of o with respect to h times 

the derivative of the argument of o with respect to h which gives us just the weight wkm 

complex expression for this. 

So, before I put these things together to make things a little simple let me introduce a 



small notational thing. So, that it makes lie for little easier for us, so I am going to say δk 

for the input i this essentially the error term times the derivative of the last layer’s output 

function and also define this term row m for the input i as the essentially the derivative of 

g with respect to w times the summation of wkm * δk
i
. 
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So, the error of the derivative of the error with respect to the output layer weights, with 

respect the w to weights is essentially δk
i
 * h

i
m, so likewise the derivative of the error 

with respect to the first layer weights, the weights from the input layer to the hidden 

layer is given by ρm
i
 * xl

i
. 

So, if you think about it, so this part corresponds to this and that comes from here and xl
i
 

is what is left out here. So, this expression look pretty compact and now we essentially 

have... So, you essentially update the parameters by wkm is just change by accept the 

gradient here and wlm is again change by the gradient that we are computed here. So, one 

thing I want to point out here that if you are function, the function g or your function o 

happens to be a sigmoid, then g’ = g(v)(1 – g(v)). 

 And suppose you are using a tanh function, because you want here outputs to run from - 

1 to + 1, suppose then  essentially this gives you then g’ = 1 – g
2
(v) So, you can see that 

the sigmoid functions have a very convenient form for the derivatives. So, one thing that 

we have to be careful about here is the fact that these are gradient following methods and 

therefore, and there is a good chance that will get stuck in local optima and there are 

many techniques for getting out of these local optima, but we are not discuss too many of 



them there one of the simplest one is of course, to try this with multiple starting stage, 

starting points for your weights and taking the set of weights that gives you the best 

possible result at the end of some kind of experimentation. 

So, that brings us to the end of this module on training your neural network using back 

propagation. So, but this form of training has it is own draw backs will see what is that in 

the next module. 


