
Introduction to Data Analytics

Prof. Nandan Sudarsanam and

Prof. B. Ravindran

Department of Management Studies and

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 06

Lecture – 34

Artificial Neural Networks

Hello and welcome to this module on Artificial Neural Networks.

(Refer Slide Time: 00:14)

So, artificial neural networks, are computing models inspired by biology. So, we have

neural network architectures that have been proposed for a variety of different analytics

tasks like regression, classification, clustering, feature extraction, etc. So, these

architectures essentially are networks of simple computing entities and so this is like a

very simple threshold entities that are connected together in the specific network

architecture that give rise to complex computing functionality.

Now, oscillate there has been significant resurgence in interest in artificial neural

networks, especially under the domain of T networks about which we will see in one of

the later modules. So, for this module and the discussion about artificial neural networks

is concerned in this course, we will look at only the classification task and many of the

ideas we talk about here for classification are generalizable to regression, like for while

for the other kinds of analytics task we need different architectures and, but we are not

going to cover that in this course.

(Refer Slide Time: 01:22)

So, the inspiration comes from biological neuron. So, let us not worry about the complete

complex structure of a neuron, what we really have to focus here is on the input and the

output. So, the neuron receive inputs from the dendrites or from the dendrite branches

from other neurons and when the input signals is above a certain threshold, it is going to

produce an output, that is going to be transmitted via the synopses to neurons that are

further down the line.

(Refer Slide Time: 01:54)

So, these connections to the dendrites and synopses are going to be result in a very

complex network and even though, the computing done by each element is very, very

simple summation and thresholding. The sum total of this taken across the entire network

can give rise to daily complex computations, which we will see.

(Refer Slide Time: 02:12)

So, the completing unit is something that is very simple. So, it is going to take a set of

inputs x1 to xn and it is going to compute some functional arm; its function is very simply

incredible and then it will produce an output. So, we will look at what this function is

going to be in detail in the next few slides.

(Refer Slide Time: 02:30)

So, the initial model for this for a biological neuron was proposed by McCulloch-Pitts in

1943 it is called the McCulloch-Pitts unit, it is only binary signals, so 0s and 1s. So,

either an input is active, then these cases are represented by 1 or if it is not active, in this

case it is represented by 0 and the nodes also produced only binary results. So, the

outputs could be either 0s or 1. So, the edges between these different nodes were

directed, unweighted, they could be of two types that could be excitatory or inhibitory

and again I can mentioned earlier, the transfer binary signals.

(Refer Slide Time: 03:11)

So, what is the computation that happens here? So, I let assume that the McCulloch-Pitts

unit gets inputs x1 to xn through n excitatory edges. So, these are positive edges and

inputs y1 to ym through inhibitory edges. So; that means, these are edges that could

produce the depression in the function or could actually stop the functioning of the

neuron. So, the assumption that was made is, if m is greater than or equal to 1 that is at

least one inhibitory edge and if any one of the inhibitory edges is 1, so if there is a one

inhibitory input then the unit as a whole does not produce any output, regardless of what

the inputs x1 to xn are.

If none of the inhibitory inputs are 1 or if there are no inhibitory inputs at all, the unit

computes the summation of x1 to xn, let us call it x and if x is greater than the threshold

that is specified for each unit, if it is greater than the threshold θ then the result of the

computation is 1 as the result is 0. So, it is very simple, so essentially you can think of it

as adding up all the inputs that come to the neuron and if the summation is greater than

our threshold θ, your output will be 1; otherwise, your output will be 0. So, the inhibitory

edges in some sense here acting act as a gating signal. So, if it is 1, the output is always

0, if the inhibitory is only 0 then the output is the result of the computation.

(Refer Slide Time: 04:43)

So, it is essentially the McCulloch-Pitts unit, it is implementing just threshold function.

If the input is below θ you are going to see a output of 0, if the input is above θ you are

going to see a output of 1, that this is essentially a step function.

(Refer Slide Time: 04:57)

So, what kind of computations can you do with this? So, you can actually do almost all

your familiar Boolean operations with the McCulloch-Pitts neuron. So, you can think of

doing an AND operation, you have two inputs x1 and x2 and the threshold is set a 2. So,

if only both x1 and x2 are one, so it will be greater than or equal to the threshold and

therefore, the output will be 1 and for implement in a OR you can set the threshold that

one. So, if either x1 or x2 is 1 to the output will be 1 after complimenting a NOT unit it

can implement the NOT unit by having x1 act as an inhibitory input. So, this circle here

indicates an inhibitory input.

So, if x1 is 1; that means, they neuron and inhibitory output will be 0 on the other hand x1

is 0 then the output will be whatever according to the result of the computation. But, we

can see here that the threshold for this neuron set as 0 and that is for the output will be

always 1 as long as there is no inhibitory input. So, if x1 is 1 then the output will be 0, x1

is 0 output will be 1, that how we have implemented NOT function. Now, once we

unable to implement this kinds of AND, OR and NOT then you know that you can

connect neurons together and then implement any Boolean function that we want and is

this really we are interested in.

(Refer Slide Time: 06:27)

So, we are not really interested in that because we want to be able to do more complex

classification problems, then we would like learn simple things like linear surfaces or

more complex surfaces that is separate two classes. So, that is has been the goal of

classification we have looked at so far. So, in 1957 rosenblatt proposed a very simple

extension to the McCulloch-Pitts model which we called the perceptron, the more crucial

thing what the perceptron is that a it introduced weights at the inputs, crucial differences

from the perceptron from the McCulloch-Pitts module is that the perceptron introduced

weights at the input.

And then it the output could be either a one or a - one depending on whether the

weighted sum of the inputs is greater than threshold that one that is the computing unit

with a threshold θ. So, the output of the neuron is 1 if the weighted sum of the inputs is

greater than or equal to θ is equal to - 1 otherwise.

(Refer Slide Time: 07:34)

So, what is the goal here in perceptron learning, when perceptron learning we are

essentially trying to learn a hyper plane, trying to learn a separating surface as we have

done in the past in the other classification problems, we are trying to learn the separating

surface that can separate one class from the other. So, what would the classes be in our

case, classes in our case would be + 1 and - 1. So, this essentially means if wi xi is greater

than equal to θ, it essentially defines the equation of a hyper plane as we have seen in the

previous modules.

So, if this you can take the θ to the other side. So, we like wi xi - θ ≥ 0. So, we have seen

that was greater than 0 to some one side of the hyper plane if it is lesser than 0 it is on

other side of the hyper plane and we are going to say that data points to one side of the

hyper plane belong to class 1 data points other side of the hyper plane belongs to class -

1. So, now, the question is given a set of training data that gives you the vector x and the

decided output y.

How would we find these weights wi's such that the perceptron is actually implementing

that hyper plane, implementing the right separating hyper plane. So, the weighted all this

is follows, you start of the randomly initializing the weights to some value and then we

look at the prediction that is made by the way. So, the prediction that is made by the

current setting of the weights, let us call it o and the target is the two class of the data

point x. So, with this, it will be + 1 or - 1 and likewise o is also + 1 or - 1. So, your goal

is to make sure that here perceptron output matches the target value.

So, the perceptron training algorithm has a very simple rule. So, at every presentation of

an input point, we change the weights by an amount that is proportional to difference

between the target value and the actual output produce times that the input on the

particular it. So, wi changes by an amount that is proportional to (t – o) * xi. So, η here is

a small constant may be 0.1 or 0.01 as called the learning rate.

So, one thing to note here if for a particular input xi will produce the correct output. So,

the class is - 1 and I produce - 1, the class is + 1 and I produce + 1. This expression

evaluates to 0. You can see that this expression evaluates to 0 and therefore no changes

in the weights will happen. So, essentially what happens here is you change the weights

only whenever you make a mistake and that to you change the weight proportional to the

input variable. So, if xi is say a small value say 0.1 or 0.2 then will be changes in the

weight will be small and as for as the poster when xi is the large value let us say 1 or 0.95

and things like that then the change it be next will be large.

So, this essentially because the larger the input variable the more important it is going to

be in the production of the output at least the way we are set up this perceptron. So, that

is essentially the simple training rule. So, whenever you make a mistake, you take the

vector for which we have made a mistake add some small fraction of that vector to the

weights.

(Refer Slide Time: 11:14)

So, this looks like a very simple rule, but then back in 50's this perceptron’s created a lot

of human cried the people saw that the perceptron’s by the able to learn from scratch

trying to solve something which are considered hard learning problems and then they

used the perceptron’s they were able to solve that, so much so you can see here the hype

was that they are going to build the computer that expects to be able to walk, talk, see,

write, weight reduce itself and be conscious of it is existence, such the significant

amount of hype and it is always hard to live up to any height that this proportionate and

to the actual effect that was achieve that point.

(Refer Slide Time: 11:59)

So, let us take a look let us just back and take look at what can of perceptron learning is a

news paper article really true or what are the limits to the perceptron’s learning ability.

So, here is a very simple perceptron here, so it has a two input variable x1 and x2 and that

is the threshold of 1 and the weight w1 is 0.9 and w2's 2. So, if you look at it essentially it

implements this straight line here, so everything above the straight line this light color

regions belong to one class and the dark color regions belong to another class.

So, we know that these are data which are linearly separable; you saw this in the case

with SVM's. So, these are data that are separated by a linear hyper plane or the linear

separating surface. So, all data points for which the w
T
x > 1, will get a class of + 1 all

those that evaluate to lesser than 1 and get a class of - 1.

(Refer Slide Time: 13:03)

So, again let us go back and look at the simple logic function that we saw earlier. So, it

can implement that OR. So, essentially OR requires you to have a hyper plane and this

passing here. So, everything to this side this become + 1 everything to this side become -

1 and likewise you can implement and so you can draw a simple hyper plane. So,

everything to this side become + 1 and everything this side becomes - 1 or 0, I mean

depending on how you wanted to predict the output.

(Refer Slide Time: 13:31)

And let us look at another one, look at simple problem just like OR and AND the XOR

problem. So, Minsky and Papert in 1969 in a famous monograph called the perceptrons

showed that well a simple problem like XOR. So, where the truth table is given here is

the inputs of the same output is 0, if the inputs are differently output of 1, the simple

problem like XOR is not linearly separable, you cannot draw a hyper plane that separates

these two classes.

So, forget about walking, forget about talking and doing all those wonderful things that

was claimed to newspaper article perceptron’s cannot even solve this as simple problem

as XOR is essentially says that two things are same, the output is 0, two things are

different the output are 1 that we cannot recognize the similarity between this simple

inputs like 0's and 1's what kind it do to complex computations. So, once Minsky and

Papert showed this, it is a kind of you dampened the research into neural networks for a

long time until there was revival much later.

(Refer Slide Time: 14:41)

So, perceptron’s can learn only linear decision boundaries that is the take away message

here. So, that is make that is whole idea of neural networks completely useless, because

they can learn only linear decision boundaries in case of SVM's we saw that we could get

it to do all linear boundaries by going into Kernel expansion this has something similar

that we can do here.

(Refer Slide Time: 15:05)

Let us look at how we can change the representations and try to do something more

clever. So, if you look at the original problem the XOR problem, so I have my inputs x1

and I have my input x2 and now we can see that in this space the problem is not

separable. But, let us look to do a simple transformation on my data points, so instead of

looking at x1 I will define my first variable as NOT x1 and x2 and similarly I will define

my second variable as x1 and NOT x2.

So, if you think about it, so we can now plugging different values of x1 and x2 here and

see what the outputs will be and then you can see that when x1 is 0 and x2 is 0, the output

is going to be 0, when x1 is 1 and x2 is 0. So, the output here will be x1 is 1 and x2 is 0,

the output here will again be 0 and x1 is 1 and x2 0 the out here will be 1. And we know

that 0 1 the output has to be 1, so that we get it here and likewise for the symmetric case

this will be the output and so you can see that this is again going to be 1 and when x2 x1

x2 both are 1 again the output will be 0 0 and therefore, this is the resulting point.

Now; obviously, this representation the data points are linearly separable. So, now, the

task becomes one of finding the right representation, such that the data becomes linearly

separable for the next level, next stage of computation. So, people realized this very

quickly, so even though a single perceptron cannot solve complex problems like XOR

which are not linearly separable, he could actually stack layers of neural neurons and

then have the first layer compute something that is simple.

So, you can always compute NOT of x1 we saw that earlier and also can be computed by

a single neuron. So, you can this get have layers of neuron that exactly compute your

features and of NOT x1 , x2 and then have another neuron, which takes the output of this

neurons combine same together and produces the output that you want. So, people very

quickly realize that stacking these kinds of neurons into layers allows you to do more

complex computation.

In fact, it is easy to show that stacking these neurons into layers actually builds a

universal function representation that learns to a represent any Boolean function, you see

a combination of neurons. So, what is a problem, now we know how to solve this more

complex problems, why did the research in neural networks pick up again.

(Refer Slide Time: 18:06)

So, the question here is when I start connecting all of these neurons into layers. How do I

find the weights? So, perceptron learning algorithm might no longer work in this case

actually does not work in this case and people were struggling to come up with the

mechanism for training all these weights. So, you can see that the way of started putting

these things into layer. So, that is one input layer and one output layer, so there is one

input layer, there is one output layer and in between this you could have many layers of

neurons, they are typically called hidden layers because you do not observe their outputs

directly.

So, now, we have this many, many hidden layers of weights and it is little hard to find

out what this weight should be and so in the mid 80's around 83 an algorithm was

proposed called back propagation which allow you to learn the weights of this and we

solve this hidden layers.

(Refer Slide Time: 19:15)

So, for the rest of the presentation, we will be looking at the standard three layer

network. So, there is an input layer x1 to xd and the output layer which will denote by f of

x and one hidden layer of neurons. So, these take the inputs from the input layer do the

weighted sum do your thresh holding function and then produce an output and then the

neuron and output layer will take all this outputs of the hidden layers take their weighted

sum and take the threshold or not and that produce the output, instead of using hard

threshold we use a kind of a soft threshold in order to do this competitions this is needed,

so that you can derive more efficient training algorithms later.

So, the output of a hidden units and it given by g(bias), this is the θ that we had earlier.

So, instead of θ so it is going to call it o(b
1
 + W

1
* x) and the output of this will be note

by h(x) and the output of the final layer of neurons is given by some function o(b
2
 + W

2
*

h(x)). And so now, the goal here is to figure out what this W
1
 and W

2
 are going to be. So,

this is called the three layer network, even though there are only two sets of weights that

we have to learn.

So, the layers here talk about the neurons here, so we use for each input variable we are

same that there is separate neuron that is activating the hidden units. So, this is called the

standard three layer network structure.

(Refer Slide Time: 20:59)

So, what are the different activation functions you can use? So, we already looked at one

which is the threshold function, we can also have just a linear activation function that

basically takes the summation of weighted summation of all the inputs and outputs as it

is. We can also look at the sigmoidal function, sigmoid logistic function which takes the

summation input and then squashes the input. So, that it remains between 0 and 1 and

then there is a steep raised somewhere around the threshold. So, that it transitions rapidly

from 0 to 1.

When if you are interested in having signed outputs then you can think of using a

hyperbolic tangent, where the outputs are going to taxation between - 1 and + 1 and

again around the threshold. So, there are parameters at control where the threshold would

be and how steep the price would be. So, another transition function some time gives is

this squashing function, which is 0 before the threshold and one at a certain distance

higher than the threshold and in between you have a, linear approximation adds to the

step function, this called the squashing function.

So, typically in most of the neural network architectures that we look at will be looking

at either the hyperbolic tangent or this, the logistic sigmoid or the linear activation,

because these are different shape and this allows as deriving efficient training algorithms

for the same. So, if you are doing a classification problem then the output layer could be

the hyperbolic or a logistic sigmoid and if your solving a regression problem, the output

neuron could be a in linear neuron. So, that you can do appropriate regression fit.

The hidden layer almost always has to be a non-linear function and where the little bit of

what you can show that if the hidden units have a linear activation, like you might as for

not have them at all. And what is the function that is implemented is something which

can be as well implemented by a single layer of neurons. And the next module we look at

how you the exactly find out these weights given the assumption that they are working

with the sigmoidal logistic function.

So, the function for the sigmoidal logistic thing is given by f(net) =

 . So, that is

the function and look at, given that this is the activation function how we are going to

derive the weights of the two layer standard three layer neural network. So, that is in the

next class.

