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Hello and welcome to this module on Artificial Neural Networks. 

(Refer Slide Time: 00:14) 

 

So, artificial neural networks, are computing models inspired by biology. So, we have 

neural network architectures that have been proposed for a variety of different analytics 

tasks like regression, classification, clustering, feature extraction, etc. So, these 

architectures essentially are networks of simple computing entities and so this is like a 

very simple threshold entities that are connected together in the specific network 

architecture that give rise to complex computing functionality. 

Now, oscillate there has been significant resurgence in interest in artificial neural 

networks, especially under the domain of T networks about which we will see in one of 

the later modules. So, for this module and the discussion about artificial neural networks 

is concerned in this course, we will look at only the classification task and many of the 

ideas we talk about here for classification are generalizable to regression, like for while 

for the other kinds of analytics task we need different architectures and, but we are not 



going to cover that in this course. 
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So, the inspiration comes from biological neuron. So, let us not worry about the complete 

complex structure of a neuron, what we really have to focus here is on the input and the 

output. So, the neuron receive inputs from the dendrites or from the dendrite branches 

from other neurons and when the input signals is above a certain threshold, it is going to 

produce an output, that is going to be transmitted via the synopses to neurons that are 

further down the line. 
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So, these connections to the dendrites and synopses are going to be result in a very 



complex network and even though, the computing done by each element is very, very 

simple summation and thresholding. The sum total of this taken across the entire network 

can give rise to daily complex computations, which we will see. 

(Refer Slide Time: 02:12) 

 

So, the completing unit is something that is very simple. So, it is going to take a set of 

inputs x1 to xn and it is going to compute some functional arm; its function is very simply 

incredible and then it will produce an output. So, we will look at what this function is 

going to be in detail in the next few slides. 
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So, the initial model for this for a biological neuron was proposed by McCulloch-Pitts in 



1943 it is called the McCulloch-Pitts unit, it is only binary signals, so 0s and 1s. So, 

either an input is active, then these cases are represented by 1 or if it is not active, in this 

case it is represented by 0 and the nodes also produced only binary results. So, the 

outputs could be either 0s or 1. So, the edges between these different nodes were 

directed, unweighted, they could be of two types that could be excitatory or inhibitory 

and again I can mentioned earlier, the transfer binary signals. 
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So, what is the computation that happens here? So, I let assume that the McCulloch-Pitts 

unit gets inputs x1 to xn through n excitatory edges. So, these are positive edges and 

inputs y1 to ym through inhibitory edges. So; that means, these are edges that could 

produce the depression in the function or could actually stop the functioning of the 

neuron. So, the assumption that was made is, if m is greater than or equal to 1 that is at 

least one inhibitory edge and if any one of the inhibitory edges is 1, so if there is a one 

inhibitory input then the unit as a whole does not produce any output, regardless of what 

the inputs x1 to xn are. 

If none of the inhibitory inputs are 1 or if there are no inhibitory inputs at all, the unit 

computes the summation of x1 to xn, let us call it x and if x is greater than the threshold 

that is specified for each unit, if it is greater than the threshold θ then the result of the 

computation is 1 as the result is 0. So, it is very simple, so essentially you can think of it 

as adding up all the inputs that come to the neuron and if the summation is greater than 

our threshold θ, your output will be 1; otherwise, your output will be 0. So, the inhibitory 

edges in some sense here acting act as a gating signal. So, if it is 1, the output is always 



0, if the inhibitory is only 0 then the output is the result of the computation. 
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So, it is essentially the McCulloch-Pitts unit, it is implementing just threshold function. 

If the input is below θ you are going to see a output of 0, if the input is above θ you are 

going to see a output of 1, that this is essentially a step function. 
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So, what kind of computations can you do with this? So, you can actually do almost all 

your familiar Boolean operations with the McCulloch-Pitts neuron. So, you can think of 

doing an AND operation, you have two inputs x1 and x2 and the threshold is set a 2. So, 

if only both x1 and x2 are one, so it will be greater than or equal to the threshold and 



therefore, the output will be 1 and for implement in a OR you can set the threshold that 

one. So, if either x1 or x2 is 1 to the output will be 1 after complimenting a NOT unit it 

can implement the NOT unit by having x1 act as an inhibitory input. So, this circle here 

indicates an inhibitory input. 

So, if x1 is 1; that means, they neuron and inhibitory output will be 0 on the other hand x1 

is 0 then the output will be whatever according to the result of the computation. But, we 

can see here that the threshold for this neuron set as 0 and that is for the output will be 

always 1 as long as there is no inhibitory input. So, if x1 is 1 then the output will be 0, x1 

is 0 output will be 1, that how we have implemented NOT function. Now, once we 

unable to implement this kinds of AND, OR and NOT then you know that you can 

connect neurons together and then implement any Boolean function that we want and is 

this really we are interested in. 
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So, we are not really interested in that because we want to be able to do more complex 

classification problems, then we would like learn simple things like linear surfaces or 

more complex surfaces that is separate two classes. So, that is has been the goal of 

classification we have looked at so far. So, in 1957 rosenblatt proposed a very simple 

extension to the McCulloch-Pitts model which we called the perceptron, the more crucial 

thing what the perceptron is that a it introduced weights at the inputs, crucial differences 

from the perceptron from the McCulloch-Pitts module is that the perceptron introduced 

weights at the input. 



And then it the output could be either a one or a - one depending on whether the 

weighted sum of the inputs is greater than threshold that one that is the computing unit 

with a threshold θ. So, the output of the neuron is 1 if the weighted sum of the inputs is 

greater than or equal to θ is equal to - 1 otherwise. 
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So, what is the goal here in perceptron learning, when perceptron learning we are 

essentially trying to learn a hyper plane, trying to learn a separating surface as we have 

done in the past in the other classification problems, we are trying to learn the separating 

surface that can separate one class from the other. So, what would the classes be in our 

case, classes in our case would be + 1 and - 1. So, this essentially means if wi xi is greater 

than equal to θ, it essentially defines the equation of a hyper plane as we have seen in the 

previous modules. 

So, if this you can take the θ to the other side. So, we like wi xi - θ ≥ 0. So, we have seen 

that was greater than 0 to some one side of the hyper plane if it is lesser than 0 it is on 

other side of the hyper plane and we are going to say that data points to one side of the 

hyper plane belong to class 1 data points other side of the hyper plane belongs to class - 

1. So, now, the question is given a set of training data that gives you the vector x and the 

decided output y. 

How would we find these weights wi's such that the perceptron is actually implementing 

that hyper plane, implementing the right separating hyper plane. So, the weighted all this 

is follows, you start of the randomly initializing the weights to some value and then we 



look at the prediction that is made by the way. So, the prediction that is made by the 

current setting of the weights, let us call it o and the target is the two class of the data 

point x. So, with this, it will be + 1 or - 1 and likewise o is also + 1 or - 1. So, your goal 

is to make sure that here perceptron output matches the target value. 

So, the perceptron training algorithm has a very simple rule. So, at every presentation of 

an input point, we change the weights by an amount that is proportional to difference 

between the target value and the actual output produce times that the input on the 

particular it. So, wi changes by an amount that is proportional to (t – o) * xi. So, η here is 

a small constant may be 0.1 or 0.01 as called the learning rate. 

So, one thing to note here if for a particular input xi will produce the correct output. So, 

the class is - 1 and I produce - 1, the class is + 1 and I produce + 1. This expression 

evaluates to 0. You can see that this expression evaluates to 0 and therefore no changes 

in the weights will happen. So, essentially what happens here is you change the weights 

only whenever you make a mistake and that to you change the weight proportional to the 

input variable. So, if xi is say a small value say 0.1 or 0.2 then will be changes in the 

weight will be small and as for as the poster when xi is the large value let us say 1 or 0.95 

and things like that then the change it be next will be large. 

So, this essentially because the larger the input variable the more important it is going to 

be in the production of the output at least the way we are set up this perceptron. So, that 

is essentially the simple training rule. So, whenever you make a mistake, you take the 

vector for which we have made a mistake add some small fraction of that vector to the 

weights. 
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So, this looks like a very simple rule, but then back in 50's this perceptron’s created a lot 

of human cried the people saw that the perceptron’s by the able to learn from scratch 

trying to solve something which are considered hard learning problems and then they 

used the perceptron’s they were able to solve that, so much so you can see here the hype 

was that they are going to build the computer that expects to be able to walk, talk, see, 

write, weight reduce itself and be conscious of it is existence, such the significant 

amount of hype and it is always hard to live up to any height that this proportionate and 

to the actual effect that was achieve that point. 
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So, let us take a look let us just back and take look at what can of perceptron learning is a 



news paper article really true or what are the limits to the perceptron’s learning ability. 

So, here is a very simple perceptron here, so it has a two input variable x1 and x2 and that 

is the threshold of 1 and the weight w1 is 0.9 and w2's 2. So, if you look at it essentially it 

implements this straight line here, so everything above the straight line this light color 

regions belong to one class and the dark color regions belong to another class. 

So, we know that these are data which are linearly separable; you saw this in the case 

with SVM's. So, these are data that are separated by a linear hyper plane or the linear 

separating surface. So, all data points for which the w
T
x > 1, will get a class of + 1 all 

those that evaluate to lesser than 1 and get a class of - 1. 
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So, again let us go back and look at the simple logic function that we saw earlier. So, it 

can implement that OR. So, essentially OR requires you to have a hyper plane and this 

passing here. So, everything to this side this become + 1 everything to this side become -

1 and likewise you can implement and so you can draw a simple hyper plane. So, 

everything to this side become + 1 and everything this side becomes - 1 or 0, I mean 

depending on how you wanted to predict the output. 
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And let us look at another one, look at simple problem just like OR and AND the XOR 

problem. So, Minsky and Papert in 1969 in a famous monograph called the perceptrons 

showed that well a simple problem like XOR. So, where the truth table is given here is 

the inputs of the same output is 0, if the inputs are differently output of 1, the simple 

problem like XOR is not linearly separable, you cannot draw a hyper plane that separates 

these two classes. 

So, forget about walking, forget about talking and doing all those wonderful things that 

was claimed to newspaper article perceptron’s cannot even solve this as simple problem 

as XOR is essentially says that two things are same, the output is 0, two things are 

different the output are 1 that we cannot recognize the similarity between this simple 

inputs like 0's and 1's what kind it do to complex computations. So, once Minsky and 

Papert showed this, it is a kind of you dampened the research into neural networks for a 

long time until there was revival much later. 
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So, perceptron’s can learn only linear decision boundaries that is the take away message 

here. So, that is make that is whole idea of neural networks completely useless, because 

they can learn only linear decision boundaries in case of SVM's we saw that we could get 

it to do all linear boundaries by going into Kernel expansion this has something similar 

that we can do here. 
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Let us look at how we can change the representations and try to do something more 

clever. So, if you look at the original problem the XOR problem, so I have my inputs x1 

and I have my input x2 and now we can see that in this space the problem is not 

separable. But, let us look to do a simple transformation on my data points, so instead of 



looking at x1 I will define my first variable as NOT x1 and x2 and similarly I will define 

my second variable as x1 and NOT x2. 

So, if you think about it, so we can now plugging different values of x1 and x2 here and 

see what the outputs will be and then you can see that when x1 is 0 and x2 is 0, the output 

is going to be 0, when x1 is 1 and x2 is 0. So, the output here will be x1 is 1 and x2 is 0, 

the output here will again be 0 and x1 is 1 and x2 0 the out here will be 1. And we know 

that 0 1 the output has to be 1, so that we get it here and likewise for the symmetric case 

this will be the output and so you can see that this is again going to be 1 and when x2 x1 

x2 both are 1 again the output will be 0 0 and therefore, this is the resulting point. 

Now; obviously, this representation the data points are linearly separable. So, now, the 

task becomes one of finding the right representation, such that the data becomes linearly 

separable for the next level, next stage of computation. So, people realized this very 

quickly, so even though a single perceptron cannot solve complex problems like XOR 

which are not linearly separable, he could actually stack layers of neural neurons and 

then have the first layer compute something that is simple. 

So, you can always compute NOT of x1 we saw that earlier and also can be computed by 

a single neuron. So, you can this get have layers of neuron that exactly compute your 

features and of NOT x1 , x2 and then have another neuron, which takes the output of this 

neurons combine same together and produces the output that you want. So, people very 

quickly realize that stacking these kinds of neurons into layers allows you to do more 

complex computation. 

In fact, it is easy to show that stacking these neurons into layers actually builds a 

universal function representation that learns to a represent any Boolean function, you see 

a combination of neurons. So, what is a problem, now we know how to solve this more 

complex problems, why did the research in neural networks pick up again. 
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So, the question here is when I start connecting all of these neurons into layers. How do I 

find the weights? So, perceptron learning algorithm might no longer work in this case 

actually does not work in this case and people were struggling to come up with the 

mechanism for training all these weights. So, you can see that the way of started putting 

these things into layer. So, that is one input layer and one output layer, so there is one 

input layer, there is one output layer and in between this you could have many layers of 

neurons, they are typically called hidden layers because you do not observe their outputs 

directly. 

So, now, we have this many, many hidden layers of weights and it is little hard to find 

out what this weight should be and so in the mid 80's around 83 an algorithm was 

proposed called back propagation which allow you to learn the weights of this and we 

solve this hidden layers. 
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So, for the rest of the presentation, we will be looking at the standard three layer 

network. So, there is an input layer x1 to xd and the output layer which will denote by f of 

x and one hidden layer of neurons. So, these take the inputs from the input layer do the 

weighted sum do your thresh holding function and then produce an output and then the 

neuron and output layer will take all this outputs of the hidden layers take their weighted 

sum and take the threshold or not and that produce the output, instead of using hard 

threshold we use a kind of a soft threshold in order to do this competitions this is needed, 

so that you can derive more efficient training algorithms later. 

So, the output of a hidden units and it given by g(bias), this is the θ that we had earlier. 

So, instead of θ so it is going to call it o(b
1
 + W

1
* x) and the output of this will be note 

by h(x) and the output of the final layer of neurons is given by some function o(b
2
 + W

2
* 

h(x)). And so now, the goal here is to figure out what this W
1
 and W

2
 are going to be. So, 

this is called the three layer network, even though there are only two sets of weights that 

we have to learn. 

So, the layers here talk about the neurons here, so we use for each input variable we are 

same that there is separate neuron that is activating the hidden units. So, this is called the 

standard three layer network structure. 
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So, what are the different activation functions you can use? So, we already looked at one 

which is the threshold function, we can also have just a linear activation function that 

basically takes the summation of weighted summation of all the inputs and outputs as it 

is. We can also look at the sigmoidal function, sigmoid logistic function which takes the 

summation input and then squashes the input. So, that it remains between 0 and 1 and 

then there is a steep raised somewhere around the threshold. So, that it transitions rapidly 

from 0 to 1. 

When if you are interested in having signed outputs then you can think of using a 

hyperbolic tangent, where the outputs are going to taxation between - 1 and + 1 and 

again around the threshold. So, there are parameters at control where the threshold would 

be and how steep the price would be. So, another transition function some time gives is 

this squashing function, which is 0 before the threshold and one at a certain distance 

higher than the threshold and in between you have a, linear approximation adds to the 

step function, this called the squashing function. 

So, typically in most of the neural network architectures that we look at will be looking 

at either the hyperbolic tangent or this, the logistic sigmoid or the linear activation, 

because these are different shape and this allows as deriving efficient training algorithms 

for the same. So, if you are doing a classification problem then the output layer could be 

the hyperbolic or a logistic sigmoid and if your solving a regression problem, the output 

neuron could be a in linear neuron. So, that you can do appropriate regression fit. 



The hidden layer almost always has to be a non-linear function and where the little bit of 

what you can show that if the hidden units have a linear activation, like you might as for 

not have them at all. And what is the function that is implemented is something which 

can be as well implemented by a single layer of neurons. And the next module we look at 

how you the exactly find out these weights given the assumption that they are working 

with the sigmoidal logistic function. 

So, the function for the sigmoidal logistic thing is given by f(net) = 
 

       
 . So, that is 

the function and look at, given that this is the activation function how we are going to 

derive the weights of the two layer standard three layer neural network. So, that is in the 

next class. 


