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So far, we have been looking at the problem of the optimal separating hyper-plane in the 

previous two modules, but then the idea of Support Vector Machines is to be able to use 

it in data which is not nearly linearly separable or only working in that space of linear 

hyper-planes. 
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One way of looking at extending this problem to complex settings is to think of taking 

your original data,  and transforming it into something else, and then trying to apply the 

same idea to the transformed function. This idea should not be new to you because you 

have always seen this in linear regression where you can look at transforming the input 

variables into some other kind of basis function, and then trying to do linear regression 

on that. So, the idea is similar to that, but we are going to make use of a very powerful 

technique here. So, look at how predictor is going to work. So, we are going to have f(x) 

= x
T
β + β0. So, that is your predictor and if f(x) < 0, I will predict it as class -1. If f(x) is 

greater than 0, I will predict it as being of class + 1. 

As on this is, so this is separating hyper-plane that we have, fine. So, if you think about 

it, we said we have solution βs,  or going to be of this form. Therefore, I can rewrite this. 

So, if you look at it, interestingly so x, all the x’s here appear as x
T
xi. This is the inner 

product of xi and similarly, if you look at how you are solving the optimization problem, 

this is what we wrote down last time. So, the duel is essentially going to have again xi
T
xk. 

So, you can see that the x’s appears in our problem always as inner products,  and if 

somehow you are able to compute this inner products efficiently, then you should be able 

to solve the problem more efficiently. In particular, given that you are going to be 

looking at this kind of transformation . where this denotes the inner products. This is 

what we can say inner product.  



So, if you stop and think about it, it essentially tells you that I really don’t need to know 

h(x). If you have an efficient way of computing the inner product of the transformed 

function, , then you really don’t need to know what the actual transformation itself is. So, 

there is a class of function which I am going to call as kernel functions here. It is called 

as kernel function which allows you to compute this inner product efficiently. So, the 

kernel corresponding to function h,  when you give it as input x and x
2
, which is going to 

compute the inner product of h(x) and h(x
2
). 
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So, one of the things that we require for a function to be a kernel function,  is there it 

should be symmetric. So, k should be symmetric, positive-definite. So, if we do not 

really understand that, so k should be symmetric in the sense that if I give it the set of x 

and x', so the kernel functions for x and x' should be the same as x', x. The positive-

definite essentially means that if I take any vector x
T
Kx, that should always be positive. 

So, there are technical reasons for why this condition should be satisfied. For one rough 

way to think about it to say that this essentially you would want this to be whole thing to 

be positive, so that your optimization problem will work as you wanted to.  

So, that is rough intuition behind why you need this condition. Some of the popular 

choices for the kernel functions are the polynomial kernel. I got the parameter d is 

something that we choose. The other one is Gaussian or the radial basis function. The 

other one is sometimes called the neural network kernel or the sigmoidal kernel. So, 



what do these kernels buy you, ? So, as I was mentioning earlier, you have a data there is 

given to in the original dimensions. The data might be badly mixed up in that original 

dimension, it might not be easily separable at all in the original dimension, but then when 

you look at the transformed dimension, then the data becomes linearly separable. 

Let us take the example of the polynomial kernel and see what happens. So, I am going 

to look at the polynomial kernel of dimension two. So, these are like two-dimensional 

vectors and on which I am defining two-dimensional polynomial kernel. So, this is 

dimensionality of the kernel doesn’t necessarily have to match the dimensionality of the 

underlined space, but in this case I am assuming this has. So, if we take the square of 

this, so I essentially end up with the expression that has six components to it. 

So, if you think about it, this is somewhat like taking the inner product in a very higher 

dimensional space than the original space. Originally x and x' were residing in a two-

dimensional space, but if you look at what is happening now, it is essentially something 

like this. So, h1(x) = 1, h2(x) = √  x, the first coordinate; h3(x) = √  x2, second 

coordinate; h4(x) = x1
2
, h5(x) = x2

2
, h6(x) = √  x1x2. So, if you imagine that I transformed 

my original two-dimensional representation into a six-dimensional representation is 

essentially taking all the second order terms along with original terms.  

Now, if I take the inner product of h1(x) and h2(x’), I will exactly end up with this 

expression. Inner product of h(x) and h(x’). So, the entire six-dimensional vector if I take 

the inner product, we are basically going to end up with this expression. So, what we 

have done here, we took the inner product in two-dimensional space,  and performed the 

squaring operation. So, this is going to give me number which is equal to the number I 

will get by first transforming the data point from two-dimensions is six-dimension and 

then, taking the inner product in the six-dimensional space. So, essentially this allow to 

work in much higher dimensional space than originally intended, but by only looking at 

inner product computation in the original space. 

So, why this is a useful property to have in the case of support vector machine, is that all 

over operation here operate only within inner product whether we are finally trying to 

predict the output f(x), or when you are trying to solve the dual problem ld. So, all we 

really need to do is know what the inner product is. Now, I am able to take the inner 

product in a higher dimensional space, but then do the computational only in the lower 



dimensional space. This allows us to have a much greater advantage than simply 

operating with the original dimension. 
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So, to see how this polynomial transmission really helps us, let us look at a very simple 

example. I am going to assume that the single dimension, and then I have data points, let 

us assume this is 0. I have data point that look like this. So, this is the dimension x1. So, 

obviously there is no single line that I can draw to separate these into two classes neatly. 

So, I can assume my slack variables and try to draw the line here that says ok I am not 

making too many errors, so on and so forth, but still that is not the satisfactory solution, 

but let us looks at what happens if I try to plot this data in two-dimensional plane, where 

I have x1 as one of my axis and x1
2
 as my other axis. So, two 0’s will probably get 

mapped to somewhere here. So, that will be x1 that is corresponding to this here and then 

looking at the square of that, but then looking at these data points, so this is going to go 

here, this will probably go here. 

Now, it is very clear that I can draw straight line. I can draw if can find the linear 

decision boundary that separates these two classes once I have done the appropriate 

transformation. So, this essentially allows us to solve a larger class of problems. You see 

the kinds of basis transformation, then we could do just by operating in the original space 

and trying to solve the linear optimal hyper-plane problem. So, this is essentially what all 

your choices of kernel functions or all about. So, if you look at any SVM tool, they will 



tell you to pick one kernel function which is either the polynomial kernel. So, in which 

case you have to pick in the appropriate d or you have to pick radial basis function or 

Gaussian kernel, in which case you have to pick in appropriate γ that tells you how fast 

the Gaussian is going to decay, or we can pick sigmoid or artificial neural network kernel 

where you have to pick ϰ1, ϰ2 which are the parameters that define how quickly this 

sigmoid function rises. We will see more about that when you look at neural networks. 

So apart from this, you still have one further parameter that we will have to worry about 

which is this constant c. So, this tells you how much slack that you are willing to 

tolerate. So, if you think about it, if C is very large, if C is infinite, then we have to be in 

the completely separable case because even a very small value of δ will cost this 

objective function to become very large. Even for a small value of δ,  so you will find 

that this thing is actually very bad. If C is very large, then δ has to be very small,  and if 

C is small, then δ can be large. So, what this is going to tell you is that in the higher 

dimensional space, where you are assuming that the higher the dimensionality that you 

are projecting into, more likely is the data will be separated,  because if C is large,  

because you are going to try in fit more complex surface. C will look, the surface will 

look very vigil, and if C is small, then you will really get much smoother surface, but the 

possibility of you making errors is also higher. So, that’s trade of that you have to figure 

out empirically by looking at how you are doing the, how you are performing in the 

actual data. 

This brings us to the end of the module on Support Vector Machines and these are very 

powerful classifiers and quite often they are the first classifiers of choice for people 

when they are trying to solve new problem which they really don’t know much. So, one 

thing I should point out that people have come up with different kinds of kernel 

functions. So, I have given you three choices of kernels here. These are essentially the 

most popularly used kernel choices, especially if you are operating with text data, you 

would like to use linear kernel d is 1 and in most other forms, you will be looking at RBF 

kernels, but then for special forms of data like graphs and strings and so on and so forth, 

people have defined their own kernels and as long as they are satisfying your properties 

of the kernel function, you can define your own kernels and then have them help you 

solve the problem. That is topics for another day or perhaps for another course. So, we 



will stop here. Just let me reframe that SVM are one of the most popular and powerful 

classifier that are currently being used widely.  

Thank you. 


