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Logistic Regression 

Hello and welcome to this module on Logistic Regression. 

(Refer Slide Time: 00:15) 

 

So, we have looked at the problem of classification earlier and here is an example from 

one of the earlier modules. So, the users not in brown here are those who bought a 

computer and those marked in red are people, who did not buy computer. 
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And the goal of classification we said earlier is to find a decision surface that would help 

us separate people who buy computers from those who do not buy computers. There are 

different ways in which you could have these decision surfaces and we looked at a few. 
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Now, let us step back and ask the question, what exactly does this decision surface mean. 
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Specifically let me ask the question, what is the data point that lie on a decision surface 

belong to, is it buy computers or does not buy computers. 
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So, one way of thinking about it is to say that this decision surface denotes all the data 

points for which the probability of it being red is equal to the probability of it being 

brown. This essentially means that for the points on the boundary the decision boundary 

you are not able to make a decision as to whether you will buy computer or does not buy 

a computer. 
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So, what is it tell us about the points that lie to one side of the boundary? So, the points 

that lie to one side of the boundary are those, where the probability that the person will 

not buy a computer in this case is higher than the probability that he will buy a computer. 

So, the one way of thinking about the decision boundary is that it models all the points, 

where both the classes are equally likely or equally probable to occur. 
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So, if you want to go beyond classification, so you might be interested in knowing what 

is the actual probability of a specific class given a data point. Not just in finding the right 



classification, you really like to know what is the probability that the person buys a 

computer given the age and income of the person versus the probability that the person 

will not buy a computer given the age and income of the person. So, why would you 

want to know this kind of probability or the class label? 

So, one example is you could think of in medical domain. Suppose I say that, you have a 

specific disease or the patient walks into the hospital and the doctor says that the patient 

has a specific disease and you would like to know if the, how confident is the Doctor of 

the prediction. So, the Doctor says I am 95 percent sure that this patient has the disease, 

then you certainly would go into the treatment. So, like wise when you have a classifier 

that is going to give you a class label you would like to know, how sure the classifier is 

of the class label and that is one application, where you would like to see these kinds of 

probabilities. 

So, one way to approach predicting probabilities instead of just the class labels could be 

to treat it as a regression problem. So, let us stop and think about how you would treat 

classification as a regression problem. 
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So, normally in classification, so you have labels, who does not buy a computer or buys a 

computer. So, instead of using these labels you could use an indicator variable for the 

class. So, if the user is or the customer is going to buy a computer I would say the output 

is 1, if the customer is not going to buy a computer I would say the output is 0. Now, 



your data gets transformed into a regression problem now instead of a classification 

problem, where you have 0's and 1's as your response variables and the actual attributes 

of the data has the predicted variables for the regression problem. 

And you could use linear regression here, we all know about linear regression now; you 

could use linear regression here. And the finally, their function that if it f of x can be 

interpreted as the probability that the output y will be 1 given the data x, that seems like a 

reasonable way of doing classification. So, whenever the probability is greater than 0.5, 

you would say that x belongs to class 1, the probability is less than 0.5 you will say x 

belongs to class 0, that it is actually a valid way of doing a classification using linear 

regression, but there are some problems with that. So, what are the problems? 
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So, linear regression is not really limited in range, the output can go from -infinity to 

+infinity. So, typically this output cannot be interpreted as a probability, when you 

troublesome it is the fact that the output can be negative and therefore, this certainly 

cannot be interpreted as a probability even if you think of doing some kind of 

normalization. Having said that I should say, it actually works in practice, if you do not 

really want to treat it as probability, but just as a classifier, you know if it is greater than 

0.5 it take it as 1 and lesser than 0.5 take it as 0 it works well, it works in practice, but 

not that well and there is way of doing better than just using simple linear regression. 
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So, I want to use linear regression still, but I am going to do that on a transformed 

function. If the transformation that we are going to talk about here is called the logistic 

function or the logit function, so let us have some notation here. Let p(x) denotes the 

probability that the output y is 1 given x, and then the logit transformation is given by the 

log(
𝑝(𝑥)

1−𝑝(𝑥)
). 

So, if you think about the binary problem, so p(x) is the probability of the output being 1 

and 1 -  p(x) is a probability of the output being 0. So, essentially you are taking this ratio 

of the probability of success to the probability of failure. So, this is known as odds and so 

this sometimes known as the log odds function. 
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So, now, what are we going to do in logistic regression is essentially try to fit a linear 

regression model to this logistic function as the output. So, essentially we end up saying 

that your log(
𝑝(𝑥)

1−𝑝(𝑥)
) can be modeled as some linear function, which is β0 + x * β1. So, if 

you think about it you can solve for p(x) from this kind of an expression and then you 

end up having p(x) looking like a sigmoid function. So, 
𝑒β0 +  xβ

1+ 𝑒β0 +  xβ and you can simplify 

that and the functional form that you are going to get is something like this. 

So, you can see that the it behaves like a probability function. So, it transfer only from 0 

to 1 and by varying the value of β what you are going to do is your going to vary the 

slope and by varying the value of β0, you are going to vary where the function is going to 

rise. So, this gives us a very valid way of fitting probabilities, there is no problem with 

interpreting p(x) fitted in this fashion as a probability. So, earlier we trying to interpret 

f(x) in a linear regression model as a probability had problems, so we could not do that, 

because it could be a negative as we saw earlier. 

But, in this case since p(x) is going to be limited between 0 and 1 he might as well 

interpreted as a probability is it that right model for doing it that is an open question, it 

depends on the domain that your working in, but it is fairly widely used and it is very 

power in resolves in a very powerful classifier and which you can use in variety of 

different settings, whether this assumption is actually supported by the data or not it 

seems to work well in practice. 
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So, that fig did with the linear regression case we will predict the classes 1 and the 

probability of x is greater than 0.5 and 0 otherwise and this essentially you can show if 

this minimizes the misclassification rate given the form of the predictor that we had on 

the previous line one thing to note. So, even though p(x) is given by this exponential 

function, the actual classification boundary… 

So, what is the decision boundary? Decision boundary is the point, where the probability 

of class 1 is equal to the probability of class 2 or class 1 and class 0 probabilities are 

equal. So, you with the little bit of thought you can see that the decision boundary is still 

given by a line which essentially β0 + xβ1 = 0. So, that gives you the decision boundary 

of the logistic regression classified as well and hence this is also a linear classifier and I 

mentioned earlier it is pretty powerful and works well in practice. 
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So, let us look at an example of what happens when we fit data using logistic regression 

versus linear regression. So, here is a two class problem, so the data points or either in 

blue or in red and the shading in the region indicates, what is the class label that would 

be predicted by the classifier in those regions. So, on the right hand side you have slides I 

mean you have the prediction made by fitting a linear regression to the indicator variable 

on the left hand side you have the output given by logistic regression. 

So, you can see that linear regression actually makes a certain errors closer to the 

boundary that is because linear regression is essentially limited at the rate at which the 

curves can climb and when closer to the boundary when there are points that are bunch 

together from one class, but little further away from the rest of the class linear regression 

is not able to model those successfully, while logistic regression by virtue of the fact that 

you could have a steep climb from 0 to 1 is able to capture those data points. So, this is 

essentially the difference between linear and logistic regression. So, far I have been 

talking about binary classification problems, because they are easier to illustrate and kind 

of understand the basics behind. 
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But, then logistic regression can be extended to multiple classes as well, suppose there 

are k classes then I would say that each class gets the different set of parameters β0 and β 

for that specific class. So, in that case what happens is your probability of... So, the 

probability that particular class is the right class for a data point is given by 𝑒β0(c) +  xβ(c) 

it is our essentially the parameters specific to the class and divided by the total the 

normalizing factor, which is essentially the numerators sums for all the data points. 

To make the problem somewhat easier traditionally the parameters of one of the classes, 

it could be either the first class by numbering from 0 to k or it could be the last class 

which is k is set to 0 and you can think about it, it really does not affect what the 

classifier the decision boundary that you are going to learn it will change the parameters 

that you are learning, but the decision boundary that you learn will not be affected. 

So, in a sense you will be left with fewer parameters that you have to estimate that is 

because you are talking about probability distributions here and we know that as soon as 

you fix n outcomes in a discrete probability distribution of the n + 1 the outcome is 

automatically fixed in total of n + 1 outcome. So, far we have been looking at the basic 

model and logistic regression and I will end this module here and for the next module we 

will look at how will actually learn the parameters of this logistic regressions classifier. 


