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Support Vector Machines 

Hello and welcome back to our description on Support Vector Machines. 
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So, we were looking at the optimization problem corresponding to the optimal separating 

hyper plane. So, to solve this problem, so with one of the techniques for solving these 

kinds of constrained optimization problems is to set up a lagrangian, which essentially 

looks at the original objective function, which is half beta square and the second 

component corresponding to the constraints that we have. 

So, if you look at this quantity in the square brackets here, so you can see that this is the 

term on the left hand side of the inequality and that is the term on the right hand side of 

the inequality and we really want to make sure that, this difference is not negative. If this 

difference is negative, then that would mean that y i times x i transpose beta plus beta 

naught is actually less than 1. So, we do not want this to be negative, so what we 



essentially say is, this we added here as with a minus sign. 

So, this essentially means that, when I minimize this whole expression, so this term will 

become as large as possible, as largely positive as possible. So, that essentially means 

that I will go and try and make this as larger than 1 as possible. So, this term here alpha i 

let us me control how much weight I want to give to satisfying the constraints versus 

how much I really want to minimize the objective function. So, we really need to satisfy 

the constraints as much as possible and since, there are solutions that will satisfy the 

constraint and give you a good optima. 

So, we should essentially be trying to derive this thing to as larger value as possible. So, 

this is called the primal of the problem and your goal needs to minimize the primal. So, I 

am going to do something fairly technical right now. So, if you do not understand all of it 

in the first goal that is fine, you might have to do a little bit more reading on this side, but 

this is essentially give you an idea of how people go about solving these kinds of 

problems. 

So, we are going to try and create, what is called the dual of this, the primal objective 

function. So, the dual is a way to create something that create an optimization problem, 

that is simpler to solve in some sense than the primal and the dual at all points provides 

you some kind of a lower bound on the kind of solutions that you can achieve with the 

primal and that the optima of the dual you ideally like the optima of the primal also to be 

achieved. 

So, we are going to create a problem called the dual, we are going to solve the dual and 

when we reach the optima of the dual, you would like the optima of the primal to be also 

achieved. The same solution that gives you the optima in the dual problem should give 

you the optima and the primal problem and there are technical conditions under which 

this is satisfied and we are not going to go in to the technique conditions and this going 

to be give you a flavor of kind of results that will be looking at. 

So, let us start by setting the derivative of l p to 0, derivative with respect to beta and 

beta naught. So, taking the derivative with respect to beta and setting it to 0 and solving 

for beta gives me… So, you can figure there out by little bit of algebra here and likewise 

setting that derivative with respect to beta naught to 0 and solving it gives me. So, you 

can substitute these back into the primal problem and do a lot of algebra, do a lot of 



algebra really and then I can simplify this and I will get what is known as the dual, we 

write the dual here. So, this is just really obtained by substituting your beta into the 

expressions here and then, using the fact that alpha i y I will be 0 at the optimum. 
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So, that is the thing, but then it is subject to be constrained. So, note that I said, so your 

dual is always going to give you a lower bound on the solution of the primal problem. So, 

really if you are minimizing the solution in your primal, it should be maximizing the 

solution in the dual, so that the two of them can coincide at some point. So, essentially 

you would be maximizing this subject to the constraint that, all your alpha i’s are greater 

than or equal to 0. 
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So, if you think about it, this is the much easier constraint to rap our heads around, 

because it just says that you will only be doing it in the positive co ordinates and while 

this had a more complex set of constraints. So, you kind of reduce the constraint to do 

something easier and therefore, the dual problem is sometimes easier to solve. So, for the 

dual and their primal to be at optima at the same time, so you really want them to satisfy 

a set of conditions, which are essentially to with the derivative of the primal problem. 

So, we required that this should whole, we required that this should whole, we write 

them as 1, 2, 3. In addition, you required that this condition should also be required, that 

this condition should also be satisfied, these are called the KKT or the Karush Kuhn 

Tucker conditions. And so far, the optimization problem to have the same solution, we 

require that the KKT conditions should be satisfied. 

So, once you have an optimal solution for the dual and the primal problem, because these 

KKT conditions have to be satisfied, you can make certain observations, especially we 

are working from condition 3 here. So, if alpha i is greater than 0, so what does it mean. 

So, this has to be equal to 0, then the term in the square bracket has to be equal to 0; that 

means, y i into x i transpose beta plus beta naught should be 1. So, what does that mean? 

It means that, it is exactly on the edge of the margin when it is equal to 1, because it is 

greater than equal to 1 is what we needed to satisfy, so when it is equal to 1; that means, 

it is exactly on the margin. Likewise if so, if the quantity in the square bracket is greater 



than 1, then alpha i has to be 0, but that essentially means is if your data point is 

something; that is far away from the hyper plane let us is more than the margin away 

from the hyper plane, then the corresponding alpha is will become 0. 

So, what does this mean for us, so if you think about it. So, the solution that we get, 

which is essentially beta that is the solution that we want to get is formed by taking the 

product of alpha i, y i and x i. So, if saying the alpha i is going to be 0, it essentially 

means that the corresponding x i has no role to play in determining, what my beta should 

be if I say that it implies if x i 0 that implies that x i has no role in computing beta. 

So, which are the data points, which will actually effect the solution beta here exactly 

those points for, which y i times x i transpose beta plus beta naught is 1; that means, you 

are exactly the points, which lie on the margin . So, only these points will influence, how 

the solution beta looks like and all the other data points that we have, which are further 

away from the separately high per plane, then these points do not matter in the solution. 

So, these points are called support vectors. 

So, do note that you really do not have to solve this optimization problem yourself there 

are enough tools that actually can do it for you the whole goal of this lecture is to get you 

to appreciate, what is said that you are doing when you are using a support vector 

machine for solving a problem. So, at the end of the day all we are going to do is fair up 

tool that is going to tell you, what is the separating hyper plane given a bunch of data, 

But, it is good to have an appreciation of how the classifier is actually build. 

So, once you figure out the beta, then I can substitute that I can substitute that into the 

KKT the third condition here and solve for beta naught. So, typically what you do is that 

you use every exercise that is a support vector and you substitute that here and then, try 

to solve for beta not and typically end of taking the average value of that. So, the couple 

of things, which I want to point out about support vector machines.  

So, one thing is we should be very clear that the training data none of the training data 

will fall within the margin, but that it is not to say that the test data might fall might not 

fall within the margin the test data might fall within the margin it might actually fall on 

the other side of the hyper plane. So, for all we know that the test data that could be 

errors on the test data it is just on the training data it tries to fix something there is as far 

away as possible from the data points. 



So, the idea here is that, so if I give as much gap between the classes as possible, then the 

classified would be more noise on either side. So, this is the assuming that the noise 

could be in this class or in this class if you know for sure that one class is noisier than the 

other or if one class is more valuable than the other. So, you might want to actually 

modify your objective, so that the line does not go write in the middle, but it is goes to 

one side or the other. 

So, having said that under the assumptions of the support vector machines if assumptions 

hold good, then is a very, very robust classifier. So, the reason is it pays attention only to 

the points that are closes to the class boundary. So, you know I can have as many data 

points here I say want I can have as many data points here I say want of the 

corresponding class it will be does not affect my classification, because truly the once 

that are close the boundary are the once that need attention. 

So, that essentially makes support vector machines more robust and on the other head if 

you are going to have some kind of stochastic process that is generating the data right. So, 

if there are the few data points there are by chance or noise data points that actually close 

to the hyper plane that will affect the support vector machines tremendously. And 

therefore, it will try to reduce the margin by a large extent while classifier that looks at 

the entire data and tries to find the distribution for the entire data might be a little bit 

more robust to this kinds of noise yes. So, this is the, this is how you solve the basic 

optimization problem for support vector machines. 


