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Lecture - 09
Similarity Coefficient based clustering algorithm

In this lecture we continue the discussion on similarity coefficient based methods for cell

formation.  In  the  last  lecture  we  started  the  discussion  by  introducing  a  similarity

coefficient S ij given by this equation.

(Refer Slide Time: 00:31)

And this  similarity  coefficient  is  called the  Jaccard’s similarity  coefficient.  Now, the

similarity coefficient is calculated as follows using the example.
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If we consider a machine component incidence matrix which is shown here on the top

with  6  rows  representing  6  machines  and  8  columns  representing  the  8  parts  or

components,  the similarity  coefficient  matrix  can be calculated  for both machines  or

rows as well as for components or columns. The similarity matrix shown in the bottom is

calculated for rows or machines and since there are 6 rows this is a 6 by 6 matrix. We

also explained how these numbers are obtained, a very quick recap if we consider the

similarity between 1 and 2 we go back to rows 1 and 2 of this matrix and find out the

number of common ones there is  only 1 place where the ones are common.  So, the

numerator is the number of common ones and the denominator is the union of ones.

So,  numerator  has  1  which  is  common  here  denominator  has  1  2  3  4  5  6  and  7.

Component  number  3  has  a  0  0  pair  and  therefore,  does  not  contribute  to  the

denominator, the rest of them have either a 1 one pair or a 1 0 pair or a 0 1 pair and they

contribute to the denominator. So, denominator is 7 numerator is 1, the ratio is 1 by 7 and

the similarity coefficient is 1 by 7.

In the previous lecture we saw how to make groups from this similarity coefficient. We

first said that we take the maximum similarity coefficient which happens to be 4, 1 and 3

or 4 1 and 4 and then we form the first group containing 1 and 3.
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We redefined the similarity coefficient matrix because we have formed a group 1 and 3

and we said that the similarity of a group with another entity will be the maximum of the

similarities  and  we  introduced  this  method  as  a  single  linkage  cluster  analysis  or

hierarchical cluster analysis.

So, let me explain the basic principles of hierarchical cluster analysis and also explain to

you what is meant by single linkage cluster analysis through an example and then show

how it is used for cell formation both in the context of the algorithm that we have seen

now, as well as in the context of several other algorithms. So, let me explain some basic

ideas in cluster analysis as well as explain what is hierarchical clustering and what is non

hierarchical clustering. So, we will also be seeing a couple of algorithms that use the

ideas from non hierarchical  cluster analysis. So, first let  us look at  what hierarchical

cluster analysis is and related to single linkage clustering, we do it through an example.

Now, let us for a moment leave the cell formation problem behind and start looking at a

very general grouping problem.



(Refer Slide Time: 04:20)

Now, let us assume that there are 5 points here, let us say these are the 5 points and let us

call these points 1 to 5. Now, let us say we are interested in grouping them. Now, when

we look at these 5 points and ask a question how many groups are there many times our

answer would be two groups with 1 and 2 as one group 3 4 and 5 as another group is a

very common answer that one would get if we post this question. But let us assume that

there are 5 points here and each of these 5 is a group for example, if I said can you

identify 5 groups from this we would say this is 1 group this is another 3rd, 4th and 5th.

Now, we can pose a question and say give me 4 groups out of it we will get an answer, if

we say we want, 3 groups we will get an answer, 2 groups we will get an answer and say

1 group then we will say all 5 can be put into 1 group. So, how do we group these 5

points in considering 2 extreme solutions where one extreme is each one of them is a

group, which means there are 5 groups the other extreme is all of them are in one group.

So, let us assume that we also have a distance matrix d ij between or amongst the points

where the distance between 1 and 2 is actually this Euclidean distance from between 1

and 2 similarly 1 and 3 1 and 4 etcetera.

So, let us assume that we have this distance matrix between 1 2 3 4 5 and 1 2 3 4 5. Now,

distance between a point and itself is 0, but we do not consider it as 0 let us say we put a

dash saying that we are not interested in finding the distance between a point and itself

we are interested in finding distance between the points. So, this will be d 12 this will be



d 21 which is the same as d 12. So, this will be d 12 this will be d 21 which is equal to d

12 distance between points 1 and 2 is the same as the distance between points 2 and 1.

Now, if we want to group them the most logical thing to do is to look at 2 points which

are close to each other which have the smallest distance.

Now, let us look at this and let us say the 2 points close to each other let us assume that it

is 1 2. So, say these this is let us assume that d 12 is smaller than d 34. So, the smallest

distance from here will be d 12. So, we can bring points 1 and 2 together. Now, let us say

we have grouped them together and say this is this is one group, this is one group. So,

now, there are 4 groups, how did we get the first group? We had 5 points initially each

point represented a group and we had a distance matrix amongst the points which is

actually the distance matrix amongst the groups and then we picked that distance which

is the smallest and then we brought those 2 points together or we brought those 2 groups

together. So, we said we have got this.

Now, we want to find out the next group. So, there are 4 groups and therefore, we need a

4 by 4 distance matrix. So, the 4 by 4 distance matrix will be like this 1 and 2 is one

group, 3 is another, 4 is another, 5 is another 1 and 2 3 4 5. Now, the distance between a

group and itself is a dash because we are not interested in this, distance between 3 and 4

3 is here 4 is here. So, it does not change. So, this will be d 34, this will be d 35, this will

be d 45 they do not change. But what is the distance between the group 1 2 and the group

3 earlier 1 and 2 were 2 distinct points with say known coordinates 3 also coordinates are

known. So, d 12 and d 13 could be formed because the coordinates are known.

But now, when we have brought 1 and 2 together how do we find the distance between 1

and  2  which  is  a  group  and  3  because.  Now, 1  and  2  has  to  be  represented  as  an

equivalent point. Normally what we do is we try and take the centroid of this 1 and 2

here and we could say that this is the equivalent point and then say that distance between

the group 1 and 2 and 3 is actually the distance between this point and 3 similarly this

point and 4 and this point, and 5 and we can complete these 3 numbers here. 

But there are several ways of actually computing this equivalent point or equivalent the

distance between groups. Now, what we normally do is if we assume that we want to

find out the distance between the group 1 2 and the group 3 we actually find out the

distance between 1 and 3, 2 and 3 and whichever is smaller we take that as the distance



between the group 1 2 and the group 3. So, in this case it will become 2 3 assuming that

2 3 is smaller than one thing it will not be something like 1 3 plus 2 3 by 2 is another

way.

So, we will  now, make an assumption that distance between this  group and distance

between this group, this is another group, represented by this point this is the minimum

distance  amongst  the points.  So,  it  is  minimum of d 13,  d 23 and that  way we can

complete this value. So, d 12 comma 3 similarly we can write 1 2 comma 4 5 and so on.

As I said this equivalent distance can actually be done in more than one way one of

which is to take the minimum distance the other is to take the average distance the third

is to take maximum distance.

Now, we have taken the minimum distance and what we have done. So, now we know

this matrix and let us say we are now, interested in finding the smallest distance in this

matrix and let us assume the smallest distance happens to be for 3 and 4. So, now 3 and 4

becomes another group and in the similar manner we now, have to construct a 3 by 3

where  the  distance  between  this  group  and  this  group  is  the  minimum  of  these  4

distances the distance between this and this is the minimum of these 2 distances and the

distance between 5 and this can be taken from the previous one.

So, we have a 3 by 3 matrix and then a 2 by 2 matrix and all of them together. So, when

we do the next iteration it is quite likely that this will be the smallest distance 5 to 3

versus 5 to 1, 5 to 2. So, the next group will comprise of this and the other one.
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So, we did two things we started with a solution with which is like this 1 2 3 4 5 as 5

groups, then we did 1 2 3 4 5, then we did 1 2 3 4 and 5, then we did 1 2 3 4 5 and then

we have, so we had 5 groups with all 5 then we have 4 groups then we have these as the

4 groups these as 3 groups these as 2 groups and this as 1 group. So now, we go back and

tell the user if you want 5 groups here is the answer if you want 4 groups this is the

answer and so on.

Now, there are two other considerations one of course, is we used the minimum here that

is one we did not use the average or the maximum and these distances.
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They are calculated in general using the formula d ij is equal to x i minus x j the whole

square plus y i  minus y j the whole square equal to d ij square. So, given a way to

calculate the distance and given a way to relate group distance versus individual distance

we are able to provide a set of solutions starting from n groups if there are n points to 1

group.

(Refer Slide Time: 15:46)

So, we can provide the solution is actually in hierarchy starting from n n minus 1 n

minus  2  etcetera  up  to  1  and  this  process  is  called  hierarchical  cluster  analysis,



hierarchical. So, this is the basis of hierarchical cluster analysis. There are two aspects

based on which the solutions can be little different and those two aspects are the way the

distance is computed and secondly, the way the group distance is related to the individual

distance. So, here we used minimum here we used distance.

Now, in this type of hierarchical cluster analysis the groups are essentially formed by

linking or linkages through linkages and it is called single linkage cluster analysis, if we

use the minimum criteria. So, this becomes single linkage cluster analysis if we use the

minimum. It is called average linkage cluster analysis when we take the average and

complete linkage when we take the maximum distance, many times single linkage cluster

analysis is used.

Single linkage cluster analysis also has some relationships with minimum spanning trees

in  case  you  are  familiar  with  minimum spanning  trees.  So,  a  single  linkage  cluster

analysis  provides a hierarchy of solutions,  it  uses minimum as the criterion to relate

individual distance versus group distance. The advantage of using hierarchical cluster

analysis is that given the number of groups you can actually get the solution, but the

disadvantage is that once a group is formed between 1 and 2 at this stage 1 and 2 will

continue to be in the same group you may add some more, but they will not at a later

point go up to different groups. For example 3 and 4 have come here after that 3 4 are

together in this group and 3 4 again together in this single group. So, they do not go to

different groups once they are linked which is a disadvantage of the hierarchical cluster

analysis.

Now, what is the relationship between the algorithm that we have seen here to group

these 5 points versus the algorithm that we used to start with this solution to start with

the given incidence matrix compute similarity coefficients and finally, say that we have a

solution with 2 groups like this. So, if we compare what we have seen. Now, with what

we have seen in the previous class there are lots of things that are common.
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The commonality is a matrix except that this is a similarity matrix whereas; the matrix

that we used here is a distance matrix which is a difference.

The common thing between this algorithm and the algorithm to group machines is the

fact that there is a matrix which is a similarity matrix in this case. We have also seen

things which are common you see that there are two machines are in one group and then

we  computed  the  equivalent  similarity  and  we  took  the  maximum  similarity  as  the

equivalent similarity which is comparable to choosing minimum distance in the other

algorithm. So, it is a form of a single link clustering algorithm that we have seen.

We also started with 6 groups individually. Now, there is a solution with 5 groups. Now,

here is a solution with 4 groups and then we have a solution with 3 groups, then we have

a solution with 2 groups and then  we have a  solution  as a  single group.  So,  it  is  a

hierarchical clustering algorithm. So, the algorithm that we saw in the previous lecture

where we have used similarities instead of distance where we have taken the maximum

to represent maximum similarity  as equivalent  of minimum distance and provides us

with a hierarchy of solutions is indeed a single linkage clustering algorithm it is a non

hierarchical clustering algorithm that uses similarities instead of distances.

The other difference is here we start with a machine component incidence matrix from

which the similarity matrix is formed or computed whereas, here we start with points

which means these points are given as x y coordinates. One way is to say that this is



computed if the location of these points are known this could be computed either by

using a scale if it is written on a blackboard or if the coordinates are given as x i, x j then

we can use this formula.

So, instead of saying that these points are actually drawn and written on the board one

could say the coordinates of these points are known. So, once coordinates of these points

are known the distance matrix can be computed. Now, we have to relate the similarity

matrix  that  we used in  the  cell  formation  algorithm and we have  to  relate  it  to  the

distance matrix  here and we have to relate  the machine  component  incidence matrix

which is a binary matrix to the coordinates of these points.

Now, let us do these two a little carefully let us do this relationship. Now, let us assume

here the coordinates are known and based on the coordinates we have got a distance

matrix. Now, the distance represents how far a point is from some other point since we

want groups to be packed we want groups or we want points in the group such that their

distance is minimized whereas, in the cell formation example that you see there on the

screen you want rows or machines to be grouped such that the similarity is maximized.

Now, if we go back to this if we go back to this we have constructed the similarity matrix

for  the  machines  and  we  first  started  with  this  3  by  4  because  it  is  the  maximum

similarity.  Now, let  us  go  back  to  3  and  4.  Now, you  look  at  3  and  4  a  similarity

coefficient of 3 by 4 has been calculated, how did this 3 by 4 come? It came because if

we see this there is a 1 1 pair sorry, if we take 1 and 3 take 1 and 3 this the maximum

similarity of 3 by 4 is coming for 1 and 3. So, let us look at rows 1 and 3. Now, there is a

1 1 pair here, there is a 1 1 pair here, there is a 1 1 pair here

So, there are 3 components that use these 2 machines and then we also observe that there

is a 1 0 pair. So, the numerator is 3, the denominator is 4 and the similarity is 3 by 4. So,

if we take machines 1 and 3, there are 3 components that are visiting machines 1 and 3

with a similarity of 3 by 4. If we take 1 and 2 there is only 1 component that it is 1 and 2.

So, would be group 1 and 2 or would be group 1 and 3 the obvious answer is we would

group 1 and 3 because more components visit 1 and 3. So, higher the similarity they will

become into the come into the same group. Now, this similarity coefficient is a ratio of

between  0  and  1  and  our  cluster  analysis  here  essentially  grouped  rows  that  have

maximum similarity.



Suppose from this similarity matrix let us say we create another matrix another matrix

where the entries are 1 minus similarity matrix remember the maximum value you can

get  in  this  individually  is  1  that  is  the  maximum value  you can  get  in  this  matrix.

Suppose you create another matrix with 1 minus similarity then we can call that as a

dissimilarity matrix, matrix that represents 1 minus similarity. So, larger the similarity

here smaller the number will be there. So, performing a cluster analysis with maximizing

similarities  in  a  similarity  matrix  would  be  the  same  as  performing  clustering  by

minimizing the dissimilarity  in the other  case. So,  dissimilarity  can be thought of as

distance. So, maximum similarity gives rise to minimum dissimilarity which gives rise to

minimum distance.

So, here in this example we have carried out cluster analysis by minimizing the distance

in this example we have carried out cluster analysis by maximizing the similarity which

essentially boils down to minimizing dissimilarity and dissimilarity can be thought of as

distance. So, these two are equivalent.

Now, the only other thing that we have to look at is here the representation is in the form

of a binary matrix in the other case the representation is in the form of coordinates. So,

given  the  coordinates  we  were  able  to  calculate  the  distance  given  this  machine

component incidence matrix we were able to calculate the similarity coefficient and we

can proceed. So, this algorithm that we used to group machines is a hierarchical cluster

analysis  algorithm  based  on  single  linkage  clustering  because  we  took  maximum

similarity which is equivalent to taking minimum distance which is what we did that and

we carried out.

Now, let us try and capture one more relationship between this and the other problem.

Now, we said that. Now, we have actually calculate captured some what we captured the

equivalence between data and this matrix and minimizing it versus data in a similarity

matrix and maximizing it from the machine component incidence matrix we created a

similarity matrix. Now, I have also said in between that it is possible to get these groups

what are the inputs required to get these groups the inputs required to get these groups

were, one the coordinates; two, a way to calculate distance and three, one of these.

So, let us assume that we stick to this minimum. So, that it is a single linkage algorithm.

Now, let  us  try  to  see  if  there  is  there  are  other  ways  of  calculating  similarities  or



distances in the incidence matrix. Now, these 5 points are given as coordinates as x y

coordinates if we go to the machine component incidence matrix we let us take rows 1

and 2 of the machine component incidence matrix and let me write these 2 rows.
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So, this I call as row 1 this is the second row. So, the first row is 1 0 0 1 1 1 0 this is the

first row, 1 1 1 0 0 is the first row. Second row is 0 1 0 0 0 and 1 1 1 is the second row

Now, one way of calculating similarity is to find out the number of parts that visit both

the machines and divide it by the number of parts that visit either or both the machines

which is the Jaccard similarity coefficient that we calculated. So, the number of parts that

visit both of them is this one, one part the number that visits either of them is 1 2 3 4 5 6

7 we got a 1 by 7.

If you take R 1 and R 3 together we get 1 0 0 1 1 1 0 0 is R 1. R 3 is 1 0 0 1 0 1 0 0. So,

one similarity coefficient which I call as Jaccard similarity coefficient is 1 by 7 here and

Jaccard similarity coefficient here is 3 by 4. Now, Jaccard similarity coefficient need not

be the only way by which we compute similarity it is one of the ways by which you can

compute similarity and it is an extremely popular way to compute similarity.

Now, let us look at another similarity. Another similarity is to say that if I take these two

we  can  define  similarity  as  the  number  of  parts  or  components  that  visit  both  the

machines. So, in this case similarity S 1 will be just 1 in this case similarity S 1 will be 3



the numerator alone will be the similarity. Now, if we say that two machines can come to

a group or if we say that more than number of parts that visit both the machines higher

their similarity coefficient and therefore, these two machines will come into the same

group therefore, we are justified in defining similarity as the number of parts that are

common and they are visiting both the machines.

Now, if there are parts that visits 1 machine and does not visit the other machine then

that;  obviously,  represents  dissimilarity.  A 1  1  represents  similarity  a  0  1  and  1  0

represents dissimilarity. Now, suppose we call dissimilarity d 1 in this case only as the 1

0 or 0 1 pairs. Now, 1 2 3 4 5 6; 1 2 3 4 5 and 6 in this case either a 0 1 pair or 1 0 pair.

Now, here the dissimilarity d 1 will be 1 1.

Now, here the dissimilarity is taken as 1 0 or 0 1 under the assumption that if there are

many parts that visit only one machine and does not visit another machine then these two

machines cannot come to the same group higher the dissimilarity less they will come into

the same group. And you obviously, see a relationship between these two wherever the

similarity is low the dissimilarity is high, you see similarity is high similarity is high

dissimilarity is low.

Now, we have  seen  two ways  of  calculating  similarity  one  is  the  Jaccard  similarity

coefficient, the second is the number of parts that visit both the machine the numerator of

the Jaccard similarity coefficient, the third is we have defined at the similarity measure.

Now, what is the maximum value this dissimilarity can take? That is 8, in the worst case

I can have 1 1 1 1 0 0 0 0, 0 0 0 0 1 1 1 1 would give me a similarity of dissimilarity of 8.

The maximum valued dissimilarity can take is 8, maximum value of similarity can take

is 8, maximum value this Jaccard can take is 1. Now, suppose I define S 2 as n minus D 1

or 8 minus 6 which is 2 this is another form of similarity.

Here S 2 will be 7 8 minus 1. Now, what is D? D is the number of 0 1 pairs or 1 0 pairs

therefore, what is this S number of 1 1 pairs and 0 0 pairs they are the remaining words.

This is only 1 1 pair this is 1 0 pair plus 0 1 pair this is 1 1 pair plus 0 0 pair. How do we

get this 2? There is a 1 1 pair there is a 0 0 pair, so it will brings us to a very interesting

question is 0 0 pair does it contribute to similarity. If 2 components or parts do not visit

both the machines then can we say that these machines are similar with respect to that

part. So, question which has not yet been fully answered, but one could define either this



or this or these two they are one and the same because this is nothing, but a constant

minus D 1. So, instead of defining a Jaccard similarity if we had defined a dissimilarity

which is sum of 0 1 pairs and 1 0 pairs, so this will be equal to sigma 0 1 1 0 I am just

defining it loosely here we will define it formally very soon. This will be sigma 1 1, only

the 1 1 pairs this will be sigma 1 1 0 0 all 1 1 pairs and all 0 0 pairs.

Now, these two are the same constant minus this. So now, you can see the relationship if

instead  of  using  the  Jaccard  similarity  coefficient  if  we  had  used  this  similarity

coefficient  and  then  if  we  had  taken  n  minus  this  to  get  this  we  could  have  used

something  very  similar  here  having  a  distance  matrix  or  a  dissimilarity  matrix  or  a

distance matrix and getting it therefore, maximizing similarities minimizing distances are

fine.

The last aspect that we have to touch upon is this. Given the coordinates x 1 x 2 or x iy x

iy or x i yi and xj yj we can calculate d ij by doing x i minus x j the whole square plus y a

root  over.  In  a  way  we  are  doing  exactly  that  except  that  this  is  not  a  point  in  2

dimensions this is a point in 8 dimension 0 1 space, it is either a 0 or a 1 it is an 8

dimensional space this is another point. So, instead of taking you can we could even say

we are taking the difference and squaring it because it is binary 1 minus 0 square is the

same. So, wherever I have 1 1 pair the distance is 0 wherever I have 0 0 pair the distance

is 0 when I have a 0 1 pair and a 1 0 pair the distance is 1 therefore, this becomes some

of this.

So,  computing  this  way  the  distance  are  this  or  similarity  is  very  is  equivalent  to

computing this distance given the coordinates. So, essentially each row of the machine

component incidence matrix which is shown here is taken as a point in a n dimensional if

there are n columns or n parts in this case 8 8 dimensional binary 0 1 space and the

distance is calculated. So, we could either calculate a similarity or calculated distance we

have seen different ways in this particular instance we have calculated a similarity and

we have used Jaccard’s similarity. We could have used instead of Jaccard similarity we

could have used this similarity also or we could have used this similarity also and then

we could have used a cluster analysis where we maximize the similarities.

Alternately we could have done using the incidence matrix we could have calculated this

distance and instead of the Jaccard similarity coefficient matrix we could have used a



distance matrix and then we could have done the clustering by minimizing the distance

which is essentially the same or equivalent to doing this. 
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So, the algorithm that we have seen,  if  you see very carefully there can be different

versions  of  the  clustering  algorithm  depending  on  how  the  similarity  is  calculated,

similarity or distance similarity or distance is calculated. So, we could use a jacquard

similarity we could have used S 1 way of calculating the similarity that we showed here,

we could use either S 2 or D 1 both are the same the only difference is if you are using S

2  you  are  maximizing  the  similarity  if  you  are  using  D  1  you  are  minimizing  the

similarity.

So, the version of the algorithm in general there are now 9 ways of doing this algorithm

3  ways  of  defining  the  group  distance  versus  the  individual  distance,  3  ways  of

calculating the similarity coefficient. So, 9 ways of doing this right. Now, the version that

you see here on the screen uses Jaccards and uses minimum, so this is what it does. This

is called single linkage cluster analysis and is a hierarchical clustering algorithm. Now,

we could try out all of them as well we could do that.

Now,  many  versions  are  available  many  versions  of  clustering  algorithms  for  cell

formation using similarity and distance methods are available and they largely differ in

the way the similarity coefficient is calculated or the distance measure is calculated and



the way in which whether it  is a complete  linkage or a single linkage or an average

linkage cluster analysis all thing. So, we have represented only one of them.

Now, if we go back to the final solution here the final solution would be there are 6 rows,

if you want 6 groups each row is a group, if you want 5 groups here is the solution, if

you want 4 then you have this solution 1 3 4 2 5 and 6, if you want 3 groups 1 3 4 2 5

and 6 if you want 2 1 3 4 2 5 6 and if you want 1 all of this. So, one thing is to say that

give me the number of groups that you want any number between 1 and 6 I will give you

the solution or any number between 2 and 5, I will give you the solution because both 1

and 6 are extreme solutions.

The other is amongst these for example, 2 3 4 and 5 which is the correct one we have to

answer that also to answer that you need to find out part families and then one way to do

is to find out the number of intervals or there should be some other measurement criteria

based on which we would say this is the best  number and therefore,  this is the best

solution. Right now, we have not answered that question what is the correct number of

groups we have said give me a number then I  will  give you the answer. So,  that  is

addressed using hierarchical clustering.

Making the groups given a certain number of points or number of groups comes under

non hierarchical cluster analysis as I said one of the limitations of procedure analysis

once  2  elements  come  into  a  group  they  will  not  be  separated  whereas,  in  non

hierarchical there is a possibility that they can be separated. So, we will see some aspect

of non hierarchical clustering we will begin this in today’s lecture and continue in the

subsequent  lectures.  Before  we  do  that  let  us  also  try  and  define  these  similarity

coefficients in a more formal way. Now, I have said I have loosely defined it by saying

one all sum of all 1 1 pairs sum of all 0 1 and 1 0 pairs and sum of all 1 1 and 0 0 pairs.

So now, let us define these formally.
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Now, between rows i  and j  and columns represent k then d ij  this distance,  distance

between 2 rows i and j is equal to summed over k summed over columns absolute value

of a ik minus a jk. For example, absolute value 1 and 1 is 0 0 plus 0 plus 0 plus 1 plus 0

plus 0 plus 0, D is equal to 1. So, this will add only when you have a 1 0 pair or a 0 1

pair if you have a 1 1 pair or a 0 0 pair the absolute value will be 0 and therefore, it will

not add. So, this is a very formal way of defining this.

Now, the other one S ij is equal to summation over k a ik into a jk just multiply both of

them, let us see what happens here 0 0 0 0 0 1 0 0 which is 1. Let us see what happens

here, 1 0 0 1 0 1 0 0 you get this. So, your S 1 that you defined there is given by this

multiplication. Now, an easiest way of defining S 2 is equal to n minus d ij n minus d ij

because here I am adding here I am adding 1 1 pair and 0 0 pairs. So, n minus d ij will

give this, but the other way to define S 2 is equal to sigma k delta k where delta k equal

to 1 if a ik is equal to a jk equal to 0 otherwise it is a slightly lengthy definition it is equal

to 0 otherwise for example, go back if both are equal, its 1 2 3 4 5 6 7 3 S 2 is 7 8 minus

1 is 7. So, this is how you formally define all of these 

So, we could say that any similarity stroke dissimilarity matrix using consistently either

S 1 or S 2 or Jaccard’s or D, D is a dissimilarity matrix or a distance matrix one can

perform cluster analysis. So, from now on let us assume that we will use this d ij instead

of maximizing the similarity we minimize the dissimilarity or distance. So, we will now



define a distance matrix from now on which will be based on this particular expression

or equation to compute the distance matrix given a machine component incidence matrix.

So, we could do a single linkage cluster analysis using D 1 and minimum also, that is

another  version of a single linkage cluster  analysis.  Whereby we compute a distance

matrix using this and then we minimize the distance and we take minimum distance to

represent  distance  amongst  the  groups.  The  other  way  as  I  said  is  to  look  at  non

hierarchical cluster analysis and we will see that in the next lecture.


