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Lecture - 24
Cell scheduling and sequencing

In this lecture we continue the discussion on Sequencing and Scheduling. In the previous

lecture we looked at the Johnson’s algorithm.

(Refer Slide Time: 00:18)

And Johnson’s algorithm which is applied on a n job 2 machine problem to minimize

makespan. The problem that we are right now considering is one where there are 4 parts

or products made in 3 cells.



(Refer Slide Time: 00:42)

So, the table on the top gives us the processing times while this represents the way in

which the manufacturing system is working. So, there are 4 jobs which are J 1, J 2, J 3, J

4; which now have to be sequenced in such a manner they go through all of them go

through cell 1 and cell 2 and cell 3 and come here.

So, we are interested in finding out when earliest all of them are available here for the

assembly. So, that becomes the makespan minimization problem on 3 machines or 3 cells

the Johnsons algorithm that we have seen in the previous lecture looks at solving an n

job to machine problem optimally. So, we also defined what is called a Johnson problem

a Johnson problem means there are n jobs 2 machines the processing times are given we

get the Johnson sequence and then we evaluate the makespan for the Johnson sequence. 

Now, how do we apply the Johnsons algorithm; now how do we apply the Johnsons

algorithm to the case where we have 3 cells and to the processing time that is given in

the other table. So, one of the ways by which we can do that is by solving 2 Johnson

problems for example, if we have 3 machines are 3 cells.
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So, we have cell 1, cell 2 and cell 3 we could solve one Johnson problem with 1 and 3

the other with 1 plus 2 and 2 plus 3. So, let us do that and then let us try and find out how

the solution looks like. So, we now solve for one and 3 which means I am going to write

the; I am going to assume somewhere for the purpose of the solution alone that I am

looking at 1 and 3. So, my times will be 8, 7, 4, 9, 6, 10 and 10; 8, now I solve a Johnson

problem out of this. So, I will have 4 jobs the smallest one happens here. So, J 2 will

come here on the first machine. So, it comes from the left the next smallest is 6; J 3 on

the first machine. So, J 3 will come here again from the left.

The next smallest is seven; so J 1 on the second machine. So, J 1 will come from this

side and J 4 will automatically come here. So, very quickly the completion times for this

particular sequence we have to do this very carefully that we should have now we go

back M 1, M 2 and M 3; we now apply this sequence not on this data, but on the other

data that is given. So, J 4 comes first J 2 comes first J 2 starts at 0 and finishes at 4 on M

1, it starts at 4 and finishes at 10 on M 2 4 plus 6 10 the third processing time is 9.

So, it starts on M 3 and finishes at 19. So, which means in this sequence the first one will

be J 2 and J 2 will be here at 4 here at 10 here at 19 the next one is J 3; J 3 enters here at

4, so plus another 6. So, 10 J 3 second processing time is 7. So, at 10 this is free, so 10

plus 7; 17. So, this finishes at 17, but this was busy till 19 this is like saying J 3 has come



here at 17, but this one is still working on J 2 till 19. So, J 3 can get into this only at 19

takes another 10 and finishes at 29. 

Next one is J 4; J 4 can enter at 10 J 4 requires a processing time of 10; 10 plus 10; 20.

So, J 4 comes out the second one is J 3 third one is J 4; J 4 comes out at 20 here, this is

free at 17. So, it enters at 20; 20 plus 8; 28 it comes out, but this is free only at 29. So, 29

it takes another 8 finishes at 37. Now J 1 is the last one J 1 enters at 20 finishes at 28

finishes at 28; now at 28 exactly this machine is free. So, it takes another 5; 33. So, J 1

comes here at 33, but this is free only at 37. So, it takes this at 37 plus another 7; 44 it

comes out. So, if we follow this sequence J 2, J 3, J 4, J 1; now at 44 it is completed

which is what is shown in the table. So, the algorithm does not stop here the algorithm

does something more which is this.
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Now, we have done only one part of the algorithm which is to look at M 1 and M 3

which is cell 1 and cell 3; now we have to look at 1 plus 2 and 2 plus 3. So, we look at 1

plus 2 and 2 plus 3 the times are 13 and 12; 1 plus 2 is 8 plus 5; 2 plus 3 is 5 plus 7. So,

13 and 12; 10 and 15; 1 plus 2 is 4 plus 6 which is 10 and 15; 6 plus 7; 13; 7 plus 10; 17

10 plus 8; 18 and 8 plus 8; 16.

Now we solve another Johnson problem out of this the smallest number happens to be

here which is for job 2 on the first machine. So, come from the left to right job 2 the next

smallest happens here which is for job one on the second machine. So, come from the



right and write job one the third smallest happens to be either here or here there are no

this is over this is over. So, the third smallest happens to be here, which is J 3 which is

again on the first machine. So, J 3 the last one that is available is J 4 which goes here.

So, we get the same sequence and when we apply the same sequence to that data we will

get the same 44 it is only incidental  that in this particular problem both the junction

problems give the same sequence if both the Johnson problems give different if the 2

Johnson  problems  give  2  different  sequences  then  the  makespan  computed  will  be

different.

And we will take the better of the 2 solutions in this case both were equal and we say that

at time equal to 44 all of them are ready at the assembly if for some reason these 4 are

actually 4 parts that go into the same product which is made, then this product can be

made  at  time  equal  to  44.  So,  that  the  makespan  helps  in  the  context  of  a  modern

manufacturing system using ideas from traditional sequencing and scheduling. Now this

algorithm that we have seen is a heuristic algorithm.
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This does not guarantee the best or optimum solution all the time and this is called the

Campbell Dudek and Smith heuristic; it is a very popular heuristic to solve makespan

minimization problems on flow shops considering more than 2 machines.



If there are 3 machines, we end up solving 2 Johnson problems if there are 5 machines

we end up solving 4 Johnson problems and the 4 problems could be M 1 and M 5 M 1

plus M 2, M 4 plus M 5, M 1 plus M 2 plus M 3, M 3 plus M 4 plus M 5; M 1 plus M 2

plus M 3 plus M 4 and M 2 plus M 3 plus M 4 plus M 5. So, like this 4 problems can be

created the best out of the 4 is taken as the solution given by the heuristic. So, this is how

we apply ideas from flow shop scheduling to solve, but then we will look at one more

aspect of flow shop scheduling and then we will see what we do here. So, while the

Campbell Dudek and Smith heuristic would help us to minimize the makespan which is

under the assumption that all these 4 are actually 4 parts which have to be processed on 3

cells sequentially and come to the assembly. So, 44 or the makespan is the time at which

the assembly can start it.

Now, if we want to look at other objectives of minimizing total flow time.

(Refer Slide Time: 11:18)

Which means the time taken by all these parts in the system then again we have to solve

a different optimization problem because in the makespan we minimize the maximum of

the  completion  times  in  flow time,  we  minimize  the  sum of  completion  times.  For

example, if we had followed the sequence P 1, P 2, P 3, P 4 and if we consider the second

table given as the processing time data then we look at the computations. So, we have

cell 1 or M 1, M 2, M 3 and then if we do P 1, P 2, P 3, P 4; if the sequence is known. Let

us quickly do the computation for the second problem. So, P 1 will finish at 4; 4 plus 5;



9; 9 plus 17; 26; P 2 will enter at 4 finish at 18. Now 18 plus 6; 24, but can take it again

at 26 plus 9; 35 P 3 will start at 18 finish at 24; it is free at 24; 24 plus 12; 36. So, this is

free at 35, but it can still do at 36; 36 plus 10; 46. 

Fourth one 24 plus 10; 34 machine is free at 36; 36 plus 8; 44; 46 plus 8; 54. Now in this

case makespan is 54 sum of completion times which is the extent of inventory that is

being held will be 26 plus 5; 26 plus 35 plus 46 plus 54 which is 161; 161 is the sum of

completion times or flow time in the system. So, if we use the sequence.
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J 2, J 1 or P 2, P 1, P 2, P 3, P 4 sum of completion times is 161; now let us look at

another heuristic solution to solve this problem. Now what we do in this case is we try

and first compute a certain weight associated with each part. So, if we look at part P 1 if

you look at this data 4, 5, 17, 14, 6, 9, 6, 12, 10, 10, 8, 8.

Now, what we do here is there are 3 machines. So, we calculate an index which is like 3

into 4 plus 2 into 5 plus 1 into 17. So, this is 3 into 4; 12 plus 10; 22 plus 17 is 39; we

compute another index 3 into 14; 42 plus 2 into 6; 12; 54 plus 9; 63 another index 3 into

6; 18 plus 2 into 12; 24 plus 18; 42 plus 10; 52 and the index 3 into 10; 30 plus 2 into 8;

16; 46 plus 8; 54. So, the index or the 4 indices are 39, 63, 52 and 64 and we arrange

them in increasing order to get the sequence J 1, J 3, J 4 and J 2 or P 1, P 3, P 4 and P 2;

now the completion times for this sequence J 1, J 3, J 4, J 2 on M 1, M 2, M 3; this is the



notation from scheduling normal flow shop scheduling in our context this will become P

1, P 3, P 4 and P 2 this will become C 1, C 2 and C 3.

Now, the completion times first is this. So, finishes at 4; 4 plus 5; 9; 9 plus 17; 26. Now

comes J 3 finishes at 4. So, can enter at 4; 4 plus 6; 10 by 10; M 2 is free. So, 10 plus 12;

22 has to wait till 26; 26 plus 10; 36 J 4 starts at 10 takes another 10 finishes at 20 waits

till 22 takes another 8; 30 waits till 36 takes another 8; 44; the last one is J 2 starts at 20

finishes at 34, again this is free at 30 itself. So, 34 plus 6; 40 wait still 44 and finishes at

53.

Now sum of the completion times will be 12; 16 plus 3, 19; 6, 10 159 which is better

than the 161 that we got now what is the rationale behind this and why are we computing

an index here and then multiplying it and then getting something the reason, we end up

doing that is if we actually find this computational time which is 26. Now this is 4; 4 plus

5; 9. So, this 26 can be written as 4 plus 4 plus 5; there is a 9 that comes out of 4 plus 5

the 17; this 26 comes out of 4 plus 5 plus 17. So, the last number is essentially 4 plus 5

plus 17, but the fact is it has been arrived at this kind of a sequence.

So, somewhere when we do this expansion if you add all these terms which is in some

sense time spent heuristically, then 4 comes 3 times 5 comes 2 times 17 comes 1 time the

second part of this algorithm; this is one such solution the next solution will be to look

only at.
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This to look only at this now this will become this is 39 minus 4 will give us 35; T 2 is

63 minus 14 which is 49 for the third one 52 minus 12 minus 6; 46 and 54 minus 10; 44

we get the same sequence and the same solution and the last one would be to look at 39

minus 9 which is 30; 63 minus 20 which is 43; 52 minus 18 which is 34 and 54 minus 18

which is 36; once again we get the same solution. So, essentially the idea is that these

when these jobs visit these machines the time spent gets compounded. So, time spent on

this would be 4 on this is 9 the time at which it comes out time at which it comes out is

26 one way of saying is 26 is actually 4 plus 5 plus 17; there is no need to multiply this

by 3 this by 2 and this by 1, but if we look at it very very carefully we see somewhere

that  this  4  will  be  contributing  more  than  what  this  5  would  be  contributing  to  the

completion.

Therefore,  we  define  an  index  where  by  4  is  multiplied  by  a  bigger  number  5  is

multiplied by a number that just smaller and 17 is multiplied by 1 to get these indices and

then we sort them based on the indices. So, this is another heuristic method to look at the

flow time problem and this heuristic is from Rajendran and Chaudhary; there are other

heuristic  methods that  are also available;  we just  introduced one heuristic  method to

solve each of these cases the reader or the student can look at several other text books or

other related literature to find out that there are other heuristics available each of these

heuristics perform well under certain conditions on under a certain test problems. There

could be test problems where this heuristics performs better than other heuristics. And

there  could  be  other  problem instances  or  test  instances  where  some other  heuristic

proposed by another author could fair better than this heuristic the student has to keep

that in mind while the optimum solution will be the same irrespective of the method that

we use.

The same problem can be solved as a binary integer programming problem or using a

different branch and bound algorithm to get the best value of this, but when we use

heuristics  each  algorithm  can  give  a  different  solution  sometimes  more  than  one

algorithm gives the same solution. So, this is how we look at these objectives; now the

flow time objective essentially says that if each of these 4 jobs do not go to the assembly

or they complete processing on 3 cells.
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And leave the shop to an assembly somewhere else then what is that time that they have

spent in the system if they follow the sequence 1, 3, 4 and 2, then the total time that they

have spent in the system is 159 time units. Now let us look at another instance.

(Refer Slide Time: 23:05)

Where we have data which is shown on the first part of the table let me reproduce this

data again here.
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So again, there are 4 jobs which are on 3 machines the times now are 4, 5, 17, 14, 6, 9, 6,

12, 10 and 10 dash 8.

Now, the only difference between this type of data and the previous data is that there is a

dash here which meant that part 4 does not visit cell 2 while all other parts visit the cells

in the same order. Now here part 4 alone goes to cell 1 and then goes to cell 3 and then

comes out it does not visit cell 2. So, it violates the flow shop assumption that all the jobs

will visit all the machines.  So, we do not apply flow shop algorithms at this for this

situation. So, we could apply typically what are called the job shop algorithms to do that.

So, we now assume that each job has a unique order of visit of the machines job one will

visit the machines are the cells in the order cell 1, cell 2 and cell 3, cell 1, cell 2 and these

3 are the same this is cell 1 and then directly to cell 3. So, we now treat this as a job shop

scheduling problem even though there are some other ways by which the literature has

handled it or authors have handled these kinds of problem situations; we would now use

this as a way to also look at how we model it as a job shop when each of these parts.

Now has a unique sequence 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 3 as a unique sequence.

Now, we apply the idea of using Gantt charts.
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So, this we would call as cell 1 or machine 1; machine 2 and machine 3, we would use

this. So, now, all the 4 jobs visit machine 1. So, all the 4 jobs visit machine 1. So, all 4

jobs are here. So, J 1, J 2, they are all here on machine 1. So, we take the one that has the

let  us  use  the  shortest  processing  time  rule  and  create  this  chart.  So,  the  shortest

processing time is for P 1 or J 1; so on M 1. So, let us use this. So, J 1 goes in at time

equal to 4 J 2 J 1 finishes on M 1 and goes to M 2

 So, this is J 1 enters at time equal to four. So, at time equal to 4 on M 1 we have J 2, J 3

and J 4; so J 2, J 3 and J 4. So, J 3 goes next. So, J 3 goes next. So, let us use this for J 3.

So, J 3 finishes at 10 and J 3 will come here at 10. Now again at time equal to 4 J 1 is

here on M 2. So, J 1 takes another 5 units J 1 finishes at 9 and J 1 moves to M 3 at 9.

Now at time equal to 10 J 2 and J 4 are available 14 and 10. So, J 4 comes based on

shortest processing time. So, let us use this color. So, from 10 to 20; J 4 finishes at time

equal to 20 and J 4 will now come directly to M 3 at time equal to 20. 

Now, at time equal to 9 J 1 is here on M 3; so at 9 J 1 starts on M 3. So, 9 plus 17; 26 J 1

finishes at  26. So, J 1 finishes at  26 and comes out now at time equal to 10; J 3 is

available here on M 2 and J 3 on M 2 is 12. So, this starts at 10 and goes on till 22. So, J

3 is available on 22. So, J 3 will come here at time equal to 22. So, we again move now

and then we realize that we are here at time equal to 20; this is busy till 22, this is busy

till 26.



So, we are at time equal to 20; J 2 is the only job that is remaining. So, J 2 takes another

14. So, J 2 finishes here at 34 and 34; J 2 comes here. So, we now go back to this chart

here we are at time equal to 22, but then J 2 is going to come only at 34. So, at now all

these 4 jobs are over here. So, J 2 is going to come only at 34. So, nothing we cannot do

anything; now we are here at time equal to 26 while J 4 has come at 20; J 3 has come at

22; so on M 3, J 4 and J 3.

We are now choosing J 4 based on smaller processing time not because J 4 came earlier

the rule that we use consistently is if there is a machine that is free and if there are jobs

waiting in front of it our rule is to choose the job that has the smallest processing time

irrespective of when it arrived, it is incidental that J 4 which arrived earlier actually has

the smaller of the processing times. So, J 4 comes now. So, J 4 starts at 26 finishes at 34.

So, J 4 finishes at 34. So, J 4 finishes at 34.

Now, again we are here at time equal to 34 J 2 is available at time equal to 34 here. So, J

2 on M 2 is another 6 which is 40. So, 40 and at 40; J 2 comes in at 40; now we are at

time equal to 34 J 3 is the only job available here. So, J 3 takes another 10 minutes. So, J

3 finishes at 44 and J 3 finishes at 44; now J 2 has come at 40; 0 J 2 requires another 9

units; so 44 plus 9 53 J 2. So, J 2 finishes at 53.

Now, we can  see the  difference  here  that  when we applied  this  kind  of  a  job  shop

scheduling  idea  we get  a  schedule  where  the  based  on shortest  processing  time  J  1

finishes at 26, but there we have computed these processing time for the sequence P 1, P

3, P 4 and P 2 we have computed it for the sequence P 1, P 3, P 4 and P 2 we get.
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We get for P 1 we get 26 for P 3 here we have 44; there it is 36 for P 4 there it is 44, here

it is 34 and it is 53. So, other sum of completion times will be 10; 14 plus 3; 17; 3, 6, 4,

157  as  against  1;  159;  we  could  get  from the  earlier  sequence.  So,  there  are  some

modifications that have to be made if we want to use the flow shop idea to try and get

this, but then the moment we have a situation where a particular job skips a machine it is

good to treat it as a job shop scheduling problem apply the Gantt charts this is the Gantt

chart for the job shop scheduling problem where the schedules are shown for each of

these jobs we have used 4 distinct colors for each of these jobs. And we have written the

solution for the Gantt chart.

Now Gantt chart is more of a evaluative kind of tool were given a rule the chart gets

defined.  So,  there  is  not  much of  an  optimization  here  the  rules  that  we have  used

consistently are if there is only one machine one job if the machine is free if there is only

one job waiting in front of it we will load that job we will not keep the machine idle that

is called a non delay schedule we will not keep a machine idle in the hope that some

other job that is going to come later if that is done first we can get a better answer.

So, when a machine is free and if there is one or more jobs waiting the machine will not

be kept idol if there is more than one job waiting the job is chosen based on what is

called a dispatching rule and the dispatching rule that we have chosen is called the SPT

rule or the shortest processing time rule. So, we have used the dispatching rule SPT to



get this Gantt chart, we could use other dispatching rules to get different Gantt charts for

example, if the 4 jobs have due dates which are 55, 635 and 36; if the due dates are 55,

635 and 36.

And instead of using the shortest processing time rule we used what is called the earliest

due date rule which means right in the beginning all the 4 jobs were available on M 1 the

times were 4, 14, 6 and 10. We chose job one because it had the smallest processing time

if we were to choose one of these 4 based on the earliest due date the earliest due date is

here for J 3 and we would have chosen J 3 first instead of J 1 and the entire Gantt chart

would have been very different.

So, when a particular job skips a machine or skips a cell it is advisable to try and use the

job shop idea to try and get a Gantt chart and get a solution based on the dispatching rule,

but dispatching rules are also a heuristic in nature and dispatching rules do not and need

not guarantee optimality; optimality of the job shop scheduling problem is also difficult

to reach they are usually not solved as 0, 1 integer programming problems branch and

bound algorithms have limited scope if you want to find the optimum solution to the job

shop scheduling problem they have limited scope most of the times they are solved using

dispatching rules which are easy to understand and easy to implement and consistent

though  there  are  other  heuristics  that  are  available  to  solve  job  shop  scheduling

problems.

The Gantt chart and the dispatching rule is a very convenient way to evaluate a solution

now the Gantt chart is here if we want to evaluate the makespan the makespan is the

maximum of these which is 53, if we want to compute the total flow time some of these

4 times or sum of completion times is 157; if the due dates are given this way job ones

due date is 55, it completes at 26, it is early job 2 due date is 60, it completes at 53, it is

early job 3 due date is 35, it finishes at 44. So, it is tardy with tardiness equal to 9 job 4

due date is 36 it finishes at 34 it is early.

So, 3 out of the 4 jobs are early one job is tardy the tardiness equal to 9 earliness can be

calculated as based on 26 and 55; there is a 29 earliness job 4, there is an earliness of 2

thirty one job 2 there is an earliness of 7. So, 38 is the total earliness that we have. So,

given the Gantt chart and given the dispatching rule the Gantt chart can be drawn and all



other objectives can be evaluated using this Gantt chart. So, this is how we use ideas

from flow shop and job shop scheduling in the context of cellular manufacturing.
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We look  at  another  aspect  of  sequencing  and  scheduling  in  the  context  of  cellular

manufacturing.  Now this is a very interesting idea that let us assume that we have a

single cell.
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Single cell and this single cell processes multiple part families in the cell formation that

we spoke about we created cells such that each cell has an associated part family.



Now, we look at a situation where we could have multiple part families for example, the

same cell could be used to make products P 1 and P 2 or let me call as Q 1 and Q 2 and

we could say that there are some variants of this and these variants could be P 1, P 2, P 3,

here and they could be P 4, P 5, P 6, here. So, in such cases how do we optimize or find

out the order in which these parts have to be given, now if we have a situation like this

there is a changeover matrix that is given here there are 6 parts P 1 to P 6, but then we

have made an assumption that P 1 to P 3 is one part family and P 4 to P 5 is another.

Now if we look at this we actually have a 6 by 6 matrix with P 1, P 2, P 3, P 4, P 5, P 6 as

6 parts and the way this is written is let us say there are 3 part families.

(Refer Slide Time: 41:39)

Which we call Q 1, Q 2, Q 3 and this contains P 1, P 2; this contains P 3, P 4; this

contains P 5, P 6.

Now, in the matrix notation we have used F 1, F 2 and F 3 as 3 families which this cell is

processing; now suppose on a particular day when we begin processing on this cell, if we

have a sequence which is if we have a different sequence with say a given sequence that

we have. So, if we had a fee 4 sequence which is first in first out sequence then we could

have 10 plus 20 plus 16. So, let me write this. So, 10 plus 20 plus 16 plus 19 plus 20 plus

14 which means we have a sequence 10 plus 16 which is P 1, P 2, P 1, P 5, P 1, P 3, 10

plus 20 plus 16. So, P 1 plus P 2 plus from then we move to P 5 to P 4 and from P 4, we

move to P 6 and P 6 to P 1. Let us say the parts have arrived in this order P 1, P 2, P 5, P



4, P 6, P 1, they have arrived in that order. So, if we use a first in first out heuristic, then

the total of changeover times will be this and that is given by 99 units.

But then we look at part families here there are 3 part families. So, P 1; P 2 is one part

family P 3, P 4 is another part family P 5, P 6 is the third part family. So, we should look

at a part family based scheduling which could give us P 2, P 1 and from there P 4, P 3

from there P 5, P 6 and then we go to P 2. So, this would give us a changeover time of

52. So, what we are essentially trying to suggest here is that there are 3 part families each

part family has certain number of parts now within these we have shown only 2 parts.

So, whether you do in the order P 1, P 2 or P 2, P 1, they will be, but if you have multiple

parts if we have 4 or 5 parts within the part family or variations within a product, then we

could solve a smaller travelling salesman problem inside to find out the best sequence,

we have seen that in the previous lecture as to how we solve the travelling salesman

problem, then what we can do is we could now solve a travelling salesman problem

amongst the apart families themselves we could solve a TSP among the part families

themselves. So, we could go back to this and create a 3 by 3 tsp with F 1, F 2, F 3, F 1, F

2, F 3.

So, if we look at F 1 this comprises of P 1, P 2, F 2 comprises of P 3, P 4. So, if you look

at P 1, P 2 data and P 3, P 4 data the minimum changeover that we can think of is

between 1 and 3 which could be 10. Now we look at F 1 and F 3 now we look at this data

between P 1, P 2 and P 5, P 6. We realize that there is a 14. So, there is a 10 there is a 14

now F 2 F 3 would give us between P 3, P 4 and P 5, P 6 there is a 12. So, first we solve a

travelling  salesman problem to find out  the sequence  in  which we will  schedule the

families. So, in this case the schedule will be F 1, F 2, F 3, F 1. So, this is 10 plus 12; F

1, F 3, F 2, F 1 would also give F 1, F 2 as 10; F 2, F 3 is 12; F 3, F 1 is 14 because we

have only 3 families we will get only one solution.

If  we  had  large  number  of  families  we  could  solve  a  travelling  salesman  problem

amongst the families to find out the order in which we take the families we have already

seen in a previous lecture as to how to do it  the only difference is here we take the

minimum changeover time to get this. For example, if we go back to that matrix, if we

look at F 1 and F 2; F 1 is P 1, P 2, F 2 is P 3, P 4. So, we look at the small matrix which

is between P 1, P 2 and P 3, P 4 which is the matrix between F 1 and F 2; if we go back

we realize that the values are 10, 12, 20 and 22.



Now as a representative measure we take the minimum of these values sometimes, we

could even take the average of these values or we could even take the maximum of these

values. So, depending on what we consistently use we will get a part family sequence

and then within every part  family  we have the parts  within  a  part  family  which are

sequenced based on a travelling salesman. So, this would ensure that the items are taken

in the order such that within a part family we follow that rule amongst the part families;

we follow a certain rule and since all of them are based on minimum changeover. So, at

the end a sequence where we try and do this kind of a thing where this is F 1, F 2, F 3

and back to  F 1.  And then within  that  the  sequence  would  give  us  a  small  smaller

changeover time compared to a first in first out their part families from parts belonging

to different families can arrive and a first in first out can give us a not so good solution.

The strength of cellular manufacturing lies in the fact that part families are created with

parts  which  are  similar.  Therefore,  scheduling  within  a  part  family  even  though  we

solved it as a travelling salesman problem scheduling within scheduling parts within a

part family would still give us a sequence with minimum changeover now scheduling the

part  families  themselves,  because part  families  themselves  could be different  and the

changeover times amongst the part families can be large.

So, part families have to be scheduled. And within the part family we will have the items

that are being scheduled. So, the basic idea to exploit the part family concept is to try and

schedule  parts  within  a  part  family  together.  So,  that  the  changeover  times  can  be

minimized that is best brought out through this particular example.



(Refer Slide Time: 50:20)

The last part that we will see in the cellular manufacturing sequencing and scheduling is

to  exploit  the  advantage  of  small  transportation  batches.  So,  when  we  have  a

manufacturing cell which let us say has.

(Refer Slide Time: 50:45)

If  we have  a  manufacturing  cell  that  has  machines  like  this  1,  2,  3,  4  and 5,  these

machines are located close to each other and therefore, it  is possible to have what is

called  a  single  piece  transportation  within  the  manufacturing  cell.  In  a  traditional

manufacturing system with department specializations, these machines could be located



in different places that would necessitate a large batch transfer. Cellular manufacturing

has transportation in single piece. So, single piece transportation can bring down the time

taken to produce.

So, this aspect we will look at through an example in the next lecture.


