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Hello, welcome to Module 9 of NPTEL NOC course on Point Set Topology part II. Today we

shall  study retraction functor   which is  closely related  to the topic  we are studying

namely local compact spaces. Let us denote the family of all Hausdorff spaces by the symbol

. 

Throughout these sections we shall only deal with topological spaces which are Hausdorff

and perhaps we even do not mention it specifically. Following the general practice, we shall

consider various sub families of  and call them categories. Though the word category has a

very  special  and  very  wonderful  meaning  in  higher  mathematics,  at  this  point  it  is  not

necessary for us to go into the details about that.
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For any topological space , let this  denote the family of all compact subsets of . So,

this is a notation for the family of all compact subsets of a given topological space. Now, we

define another topological space denoted by , please do not confuse this with ; they

are quite distinct notations. This  is the topological space with its underlying set  itself,

but  the  topology  will  be  different,  and  what  is  the  topology?  It  will  be  the  co-induced

topology  from all  the  inclusion  maps  of  all  compact  subsets  of  .  So,  this  co-induced

topology.
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Recall that the co-induced topology is nothing but the largest topology on  , such that all

these functions in this family are continuous. Once you declare a family of functions from

arbitrary spaces  into  ,  fix that  family,  take the largest  topology on   such that  all  the



members of  this  family are  continuous.  That is  called the co-induced topology from this

family. Since, I am talking about the largest family, there is only one such and that is called

co-induced topology.
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Just to recall what this topology is which we have introduced in part I, wherein, we have

studied these things very thoroughly, I am summed it up here in this lemma. Each of these

conditions  is  equivalent  to  the  definition  of  co-induced  topology.  What  are  these  three

conditions? 

(1) A subset  in the co-induced topology  is open, if and only if  is open in  for

all compact subsets of .

(2) Next, instead of open, here similar condition by replacing the word `open' with the word

`closed'. A subset  is closed if and only if  is closed in , for every compact

subset  of .

(3) The third condition is in terms of the continuous functions. A function  from  to 

is continuous, where  is any topological space, if and only if for every compact subset  of

, the restricted function, (which is the same thing as taking the inclusion map  of  into

 and then follow it by the given function  , that map) from  to   is continuous for all

compact subsets  of .  



So, these are very easy to verify. If you do not know what is the co-induced topology, you

can take any one of them as the definition. Often, we will use (1) or (2) and sometimes (3)

also.
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Now, the following properties of  are all straight forward.

(i)  The co-induced topology is always finer than the topology with which you are started. In

this particular case, see  is already a topological space and  is the inclusion map from a

compact subset   of  .  So, before  talking about compact subsets of  ,   must  have a

topology  already.   are  continuous  if  you  take  the  topology  on   to  be  the  original

topology. But  is the one with the maximum number of open sets with this property. It is

the largest topology with this property.  may have more open subsets than . Therefore,



what happens is that the identity function from   to   is continuous. This means for

instance,

(ii)  will be Hausdorff if  is Hausdorff, why? All open sets in  are open in  as

well.

(iii) If you take the family of all compact subsets of this new topological space , that is

not changed, it is same thing as the family . That is . So, this comes as

a surprise, a pleasant surprise, because if there are more open sets than the original topology,

then there is a danger that some compact subset in the orignial topology may be compact in

the new topology.  But here it is ok. That is the good thing about this particular topology

.

(iv) The fourth property is an easy consequence of (3) viz., take some space , you can take

 of  of that space. You do not get anything new than  itself.

(v) The fifth properties is: given a continuous function from  to , then underlying spaces

of  and  are the same as  and . Therefore, you can talk about the same function 

from  to  is also continuous wit the new topologies on both sides.

So, finally, you may ask why do you need it at all. So, that will be explained now.

(ii) So, the identity function from   to   is continuous I have explained that already.

Then (ii) follows one because  has more open sets than , every subset if it is open here,

then it is open here as well. So, you can use the same open sets to serve in   also for

separating given distinct points.

(iii) The third one needs a little more explanation. Take a compact set here in  Under

the inclusion map, which is continuous its image begin itself, will be compact in  also. also,

so that is the beauty. So, all compact of subsets here are compact here, fine. But suppose

something is compact here in . Why it is compact here in ? That is what you need to

understand.
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So, let  be compact subset of  and  be an open cover for  in . What are open

subsets of ? They have the property that when you intersect with any compact set in ,

you get an open set in that compact set. 

So, each   will be open in  . Obviously they will cover the entire  .   itself is a

compact subset of . I started with  which are open subsets of , but now  are

open subsets of  , where   has the subspace topology from the original topology on  .

Therefore, they will admit a finite subcover for  . But now just the corresponding finitely

many members 's. That will give you a finite cover for . So,  is contained in the finite

union of  ranging from  to  of , which is contained in the union of  ranging from 

to  of  . 



So, once the compact subsets of  are the same as that of , the two families of functions

the  same.  Therefore,  .  So,  (iv)  follows  from  (iii),  since  the  family

 is the same as the family . 

So, finally, I will have to verify (v) what is (v)? Start with a continuous function  from  to

. Now, pass on to  and , these are new topologies, what is the relation? If you take

 to , the inclusion map that is continuous,  to  is continuous. So, after composing, I

get  to , the same function , thought of as function from  to , that is continuous.

But I have to show that  to  is continuous.

Now,  obviously may have more open sets than . For those open sets, extra open sets,

why their inverse images under   are open subsets inside  . That is what we have to

check.
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So, instead of open sets, you can do it with closed sets. So let me do it with closed sets here.

Given a subset   of   which is closed in  , we have to show that   is closed in

, what is the criterion? Take a compact subset  of , intersect it with , show

that that is close in , that will do the job. So, we show that  is closed in .

Now,  is continuous from  to . Therefore, if you take , that will be a compact

subset of . Therefore, by the criteria for  to be closed in ,  is closed in . Hence,



, which is , that is closed in , because  is continuous from 

to . But now,  is already contained in , because  is nothing but .

Therefore,  is same thing as . Taking intersection further

with  does not change the set. Therefore, this intersection with  is closed in . Since this

true for all  ,   is a close subset of . That is what we wanted to show. So, that

completes the proof of this lemma. 
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So, we know something about this . Out of a given space , we are getting some other

space, what is this space, how to identify it, what are its properties, quite a few things. Many

properties are already listed. Now, we will name this  and then start studying it further.

The topological space   is called compactly generated if   is equal to  . So, this is a

general definition I am making. Remember that this is the same thing as saying that identity

map from  to  which is already continuous, is also continuous in the other way round.

That is its inverse is also continuous. That means it is a homeomorphism. That is just the

same thing as saying  is equal to . In other words, the two topologies are the same. So,

such spaces are called compactly generated.

Remember that in this section, we are all the time working inside Hausdorff spaces, though,

so far, we have not paid much attention to that, but we will keep insisting that we are using

Hausdorff  spaces.  Only  then  we  will  have  a  notation   for  the  family  of  compactly

generated Hausdorff spaces. 



So, this is another subcategory of . In particular, starting with any  in ,  is always

compactly generated and is in . So, you see that from a general space you are getting some

special space. Obviously  is a smaller family than .
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We now come to  the  property  of   which  we  call  functoriality  or  people  also  keep

referring to this as canonical property. So, this property makes this construction quite dear to

topologists. The association  from  to , and  from  to , I do not call it a function or

a map, because its domain and codomain are not necessarily sets. But that is why I have used

this twiddling arrow here instead of straight arrow, straight arrow to we are using straight

arrow for indicating functions, so here, I am only calling them association.

For all matters of our importance they do behave like functions. (Logical problems will arise

if you insist that,   is a set. That is not a set. The collection of `all' objects, as soon as the

word `all' is there we have to be careful.) So, consider these two associations given by  

going to , and  going to ;  is just the inclusion of the smaller family  into

the larger family . They have the following very close relations, nice properties.

Start  with  any  continuous  function   from   to  ,  inside  this  larger  family  ,  larger

category. So, take a continuous function like this, then with the same underlying sets, but

topologies is different,   is continuous. So, to distinguish this `new' avatar of  from , we

will just denote it by  , because now we are thinking of   having both its domain and

codomain having the compactly generated topologies, i.e.,  the topology co-induced by the

collection of compact sets, so that is why we will denote it by . As a function it is  itself.



Given   belonging to  , and   inside  , there is a natural bijection,--- So again, I have

used the word natural, I will explain it to you later, but not in the statement of the theorem.

So, what is the natural bijection? It depends upon  and  of course. It is between the sets of

all continuous functions from theses spaces,   to  , on one side and   to   on the

other side. When I write  ,  I have to think of this space   as an ordinary topological

space, though it is actually a compactly generated one. 

When I  come  here  on  the  other  side,   is  actually  compactly  generated  space,  and  the

ordinary topology on   is  replaced by the compactly generated topology. Maps here and

maps here are related by this , given by taking any  from  to  into . However,

then   is from  to  , but we already know that  . So, this  ,  new

symbol here, it is just the map  going to . So, we assert that this is a bijection, so, let us

understand that. The first part, we already seen. It is a restatement of the fifth statement of the

previous lemma. 
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For the  second part,  all  that  I  do is  to  tell  you what  is  the  inverse  of  .  Given  any

continuous function   from   to  , pre-compose it  with the identity map   to  ,

which we know is continuous and which we denote by , temporarily. So .  

So, how do you see that,  is the inverse of ? If  for some continuous function 

from  to ,  is clearly , since as set functions,  and  are the same. 

(Refer Slide Time: 24:10)

So, coming to the adjective `natural'. What is the meaning of natural isomorphism? It is the

following thing. Though the symbol , indicates that it depends on the domain and codo-

main, the construction of these maps that does not depend upon what domain/codmain you

have. All the time, start with a map and apply  functor. That is why this is natural, that is the

meaning of this one. But technically we have to express this, as below, namely, given  and



 inside  ,   and   inside  , and maps   from   to  ,   from   to  , these are

totally arbitrary, and yet, we have the relations given by the commutative diagram here. 

and  these are defined already, what is the relation between them? Wherever you have

maps  and , start with a map  from  to , here, you pre-compose and post-compose,

look at  , that will be from  to  . Starting with a map from  to  , (I do not

know  whether  I  have  written  compositions  correctly,  ok  that  is  correct),  take

.

Similarly, here see, it is  is . The assertion is that . This is

completely obvious, since both are equal to . 
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The fact that  of  is  that allows us to call  as a retraction. It is as if  is sitting

inside  and we are coming back to , and the association is identity on , so that is the

meaning of `retration'. If it is   is already  , then   will be   itself. So, in any case

 is . So, that is  is , that the property of a retraction as a map. 

Property (i) above attracts the name functor, namely not only the objects have been associ-

ated, the functions are also associated correspondingly. So, with certain properties which we

do not want to go into detail, so that is the name `functor'  given in general. Together I have

called it a retraction functor. Property (ii) describes something called adjointness. The two as-

sociations  and the inclusion, they are adjoint of each other, this is a wonderful property.

Now, finally, I want to come to one important, very-very important use of this idea, namely

this functor k, namely compactly generated. In the study of algebraic topology one of the

central things that we do is to study maps from compact spaces into some space, especially

from the spheres.  You know all the spheres are compact. Maps from a sphere into  , or

maps from sphere cross closed interval into  , these are of prime importance in algebraic

topology.

Now,  you start with any space , then if you look at the set of all maps from  to , it is

the same thing as the set of all maps from  to , why? Because  is already compact,

therefore it is compactly generated, therefore,  itself. So, studying maps from 

to any topological space  is the same thing as studying maps from  to . That means

what? Without loss of generality, we can assume that  itself is compactly generated. So,

that will help in lots of problems, namely, constructing maps etc, becomes easier, since you

have to do things only on compact subsets. This is not all. I have just introduced this one, it

will help you in the study of homology functors also.
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So, here is an example in which you must notice that giving an example of a Hausdorff space

which is not compactly generated is not all that easy. That is good, because that just means

that a lot of Hausdorff spaces are compactly generated already, so that is a happy situation.

However, we will give you an example which is not all that difficult, but it is not all that easy

also. So pay attention.

So, here is an example of a Hausdorff space which is not . To start with , where 

is these set of natural numbers, with the discrete topology. So,  is also discrete space.

Take  one  extra  point,  disjoint  union  with  extra  point,  I  denote  it  by  infinity,  with  the

following topology. Now, I have defined topology on the whole space . So, a subset  of

this ,  is what? , a subset  of  is open if and only if,  is a subset of

, (that is one condition according to which every subset of , is inside ).

Or, second condition is that there are finite subsets  and , such that 

is equal to the finite subset  union of all singleton , where the singleton 

ranges over the finite set . (In other words, take a finite subset of  and finitely many

vertical lines, take their union, if  looks like this, then the  is open).

 

Or  third  condition is  that   intersects   in  finitely  many points.  I  am again

looking at vertical lines, a vertical line intersection with  is a finite set for all .



So, there are three different types of open sets. I will repeat, the first one gives all subsets of

N cross N, because they are all open subsets because this is a discrete space. The second and

third give conditions for  the complement  of  .  The third one is  easy to remember,  viz.,

intersection with every vertical line must be finite, it may be empty that certain lines may not

be intersecting, but whatever intersects,  that intersection must be finite, such a set will be

taken and its complement in , will  etc as an open set. 

The  second  condition  you  have  to  understand  carefully.  Here,  in  the  complement  I  am

allowing full vertical lines, but only finitely many vertical lines. Along with them some more

finite subsets of . So type (ii) and (iii) are especially designed for neighbourhoods of

infinity. If a subset  does not contain infinity, then condition (i) tells you what you have to

do, what you have to do? Nothing. Any set which does not contain infinities is automatically

open. (ii) and (iii) will give you neighbourhoods of infinity. So, this is somewhat unusual, so,

I have I am going through this carefully here.

So, do you understand now that the description of this topology? It is very easy to check that

this is a topology, all that you have to do is neighbourhoods are correct, neighbourhoods of

infinity are correct, because this part is already a topology, this is a discrete space. So, why?

Suppose  you  take  two  of  them  here,   and  ,  what  will  be  their  intersection?  The

complements will be unions of such two things by De Morgan law. Union of finite subsets 

and ,  and , will come, so such unions will be alright.

Or it may be like this, again intersection with each   is finite, if union of two such finite-

finite-finite. Suppose you have one here, one here, then what happens? You are allowed from

finite subset, some finitely many things are there fine. So, rest of them are all finite what?

Rest of them are all finite here. So, this condition will take care of this one,   for

these things are  , it is fine, did not intersect,  its complement did not intersect,  but if it

contains some of them it is filthy as this one.
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So, take a topology like this, that is going to give you something, what is that? So,   is a

topology on  , that is fine. The subspace topology on  is discrete, that is also fine,

because we started with  as the discrete space, but  itself is not discrete, not all

subsets  are  open.  A  neighbourhood  of  infinity  cannot  be  arbitrary  set,  that  satisfy  this

condition or this condition, so it is not discrete, that is obvious.

Third thing is here,  is actually a  space. It is Hausdorff and it is normal. Once again,

because of  is already discrete space, we have to verify Hausdorffness for points when

one of them is infinity. For example, any point here can be separated from any point here,

because you can take this point itself as an open subset. Also since every point of  is

also a closed set, it follows that its complement is neighbourhood of infinity. So, Hausdorff



space is over. I will leave it to you to verify normality. The hint is that you need to consider

the case when one of the closed set contains infinity.

The fourth thing is for each  , look at   equal to the the vertical line  .

This itself is a discrete closed subset of . All points of  they are open, that is fine.

So, if I show that  is open here then this will be discrete. Why is  open inside this

subspace  ? Because you take singleton infinity union all other vertical  lines,  

. 

By property  (iii)  that  will  be  an open  subset  in  .  Its  intersection  with   will  be  just

singleton infinity. So, therefore, this singleton infinity is open here. So, that proves that  is a

discrete space. Why this is a closed subset? Its complement is some subset of . Every

subset of  is open. So,  a closed subset, with the subspace topology being discrete.

Final thing is very important one here. Every compact subset of  is finite. So, let me I have

already explained (a), (b), (c), (d), let me prove (e) completely here.
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Let  me any compact subset of . If infinity is not in , then  is a compact subset of the

discrete space . In a discrete space we know that every compact subset is finite, so we

are done. Now let infinity be in . Then we claim that infinity itself is an isolated point of .

Isolated singleton points are open subsets of the spaces. If you remove an isolated point, the

remaining set will be a closed subset and hence compact because closed subsets of compact

subsets are compact. But then that will be inside , so that is finite. Therefore,  will

be finite.

So, let us see why infinity is an isolated subset inside a compact subset  .  The proof is

similar to what we did here, but a little more thing we have to do. Just examine the definition

carefully.
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From (d), , is a closed subset of , that is what we have seen. Hence

 is compact because  is compact, intersection with  will be a closed subset of .

Again, by (d),   is finite, why? Because we have just now seen that this is a discrete

space.

Now, take  , throw away infinity. So, now we are inside  . Now put

. By (iii), this  is an open neighbourhood of infinity. Moreover  is just

. See, what I have did, I took  to be a compact set, intersected it with each , that is a

finite set, take  as , so threw away infinity. Then these  are closed subsets of ,

because, infinity was an isolated point of , and hence  are compact.

So,  is an open subset. It is a neighbourhood of infinity, infinity is still there,

because I have thrown away infinity from , so infinity is not in any of them. So, when take

the complement again, infinity will be there. So,  is an open subset because I have thrown

away close subset. So,  is , so that is open subset of . So, that proves  is an

isolated point of . This verifies (e)

So, it follows that  is a discrete space, why? Because we have proved that every compact

subset of  is finite and hence discrete. Now take any singleton set. Its intersection with any

compact subset  will be open in . That means all singletons are open in . That means

every subset of  is open in . 

So,  will be a discrete space.  is not discrete, therefore,  is not equal to . Just by

adding one single point,  the compactly generated-ness has gone away. You may wonder,

 is a discrete space, is it compactly generated? Yes of course. Any discrete space is

compactly generated, singleton sets are compact there. All finite subsets are compact there,

that is fine. But  is not compactly generated. That  is not a member of .  
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So, next time we will study compactly generated spaces a little deeper. I have already told

you why they are important and so on. Thank you.


