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Welcome to  module  8  of  NPTEL NOC course  on  Point  Set  topology part-II.  So,  we shall

continue the study of local compactness. We have already observed that in our definition of local

compactness, regularity is built in. Under certain mild additional conditions like -ness, it will

be a  space and then it will be Housdorff space also. 

So, what we would like to see is that under this local compactness, many stronger separation

properties are possible. So, here is an illustration. Let us begin with that. 
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The first this is a lemma here: Take a compact and close subset  of a locally compact space .

Let  be an open subset in  which contains . Then there exists an open set  such that  is

contained in  and   is contained inside  and  is compact. 

Moreover, it even stronger than this here viz., the separation is actually obtained from a function,

namely there is a continuous function  from  to  such that  is  and  is .

You started with an open neighbourhood  of a compact and closed set, so, we could have stated

that  is contained in . What we have stated is correct and actually follows easily from

this. 

So,  how do you perceive this? We have seen earlier that local compactness ensures that points

and closed subsets can be separated by open sets, which means regularity. But now from a point,

we are extending the same conclusion to closed compact sets. That is the first thing. Not only

that,  you can  actually  get  functions  of  the above type to  do the job. So,  proof  is  not  at  all

difficult. 
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Let us go through the proof. For each point , by local compactness, you can find open sets

 such  that  ,  is  in   and  that  is  in  .  This  is  pointwise  conclusion  is  from local

compactness.  

Since  is compact, if you take all the  as  varies in , that will be form an open cover for 

. Therefore there is a finite subcover. That means our  is contained inside some finite union of

these members,  so I will  call  them  .  I  will  take   to be their union.  Each  

contained inside . Therefore,  which is the union of  (because it is a finite union) that is also

contained inside . Moreover it being a finite union of compact sets,  is compact also. 

So, what I have?  contained inside  contained inside  contained inside , with  compact.

So, first part is over. 

Now see   is compact. We are working inside a locally compact space   and   is a closed

subset. So, it is locally compact also and hence it is regular also. Therefore, it is normal also. 
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Therefore, here you can apply the Urysohn’s characterization of normal spaces to this   and

.  is an open subset . Therefore  and  are disjoint closed subset of . You get a

continuous function  from  to  such that  is  and  is . So, this is the

standard Urysohn’s characterization which you have seen in the part I, of any normal spaces.

Any pair of disjoint closed subsets of a normal space can be separated by a continuous function

itself like this. That is what we have used here. 

Now, you define  from  to , by the formula  inside  and outside , I will

extend  it  by  identically  the  constant  .  Infact,  on  entire  of  ,  I  can  put  it  equal  to  .

Therefore, it will agree on the intersection of these two closed subsets. And on   it is   and

hence is continuous and on this  , it is constant  , that is also continuous. Therefore,   is

continuous from  to . 
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As an immediate corollary, we obtain several interesting results. The first one is quite useful in

measure theory. In a locally compact Hausdorff space, given a compact set   contained inside

an open subset  , there exist a continuous function   from   to   such that   is  ,

 is . 

By interchanging   to  , you can easily interchange the conclusion as well. That is always

possible. That should not confuse you. 

So, what it  says is  in a  locally compact Hausdorff space,  given an open set   containing a

compact set, we have a continuous function  such that  and .
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All that I do is to use the fact that every compact set in a Hausdroff space is a closed set. So,

therefore, we can apply this lemma, that is all. So, this is just a restatement of that part of lemma

in a special case that is all. So, this is what we get. 
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By the way, we will later on prove the same thing same result in a different way also, different

proof also we will give. Also, it should be noted that with a little bit of effort, the hypothesis that

 is closed can be removed.  

Next, a locally compact space is completely regular. This is another corollary. Why I am calling

this is a corollary because they are easy consequences of our lemma. A locally compact space is

completely  regular.  Regularity  we  have  already  seen,  it  is  built-in  in  our  definition.  Now,

complete regularity means what, given any point in  and the closed subset  outside,  must be

outside ,   is disjoint from , we have to produce a continuous function  from  to 

such that  is ,  is . So, apply the previous lemma taking  equal to  and  equal

to complement of . Starting with  and  as above, get an open set  such that  is in  and

 is compact and is contained in . Now apply the lemma with  and  equal to .

Over. So, locally compact spaces are completely regular. 
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So, this is what we meant by saying that there is more separation in locally compactness than

which is obvious from the definition, namely the built-in property was regularity, here now we

have got complete regularity of very nature free compact set an open subset of that one can be

separated and so on. 
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Let us go ahead with this one. A locally compact Hausdroff space, if you add Hausdorffness or

just put ness, it becomes a Tychonoff space. Why? Because we already we have seen that it is

completely regular. Plus  is, by definition Tychnoff space. That is all. 

Now, we shall go to a different kind of result for locally compact spaces. So, local compactness

it sits inside in the juncture of so many different kinds of concepts in topology, so, this is what

we will try to see. So, next thing is the Baire’s Category type result for locally compactness. In

other words, the Baire’s theorem is true for locally compact spaces. 

So, every locally compact space is second category or you can say that it is a Baire’s space or

you can say it is not first category and so on. So let me tell you that first of all Baire's property

was proved for complete metric spaces in part I. The proof here is more or less similar, in fact, it

is even simpler. The simplicity comes because of the local compactness you will see that. So, for

proving this one in the case of metric spaces we have to do quite a bit of preparation and all that.

Here, everything is done already, so that we can immediately prove this one. So, what is the

proof?
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Start with any countable family   of nowhere dense subsets of  . We must prove that the

union of all these ’s will not cover . Actually, we should prove a stronger thing, namely, the

complement of union of all these ’s is itself dense in . That is what we will prove and that is

equivalent to saying that the space  is a Baire’s space or it is second category. So, let  be any

non-empty open set in . We will show that none of this ’s will cover .  

So, choose any point inside this open set, (in fact, taking a point etc is not necessary,  we will see

that later,) take a neighborhood  such that  is compact and  is contained inside . So, what

have used here, local compactness, only for that purpose, I want to start with a point inside this

non-empty open set .

Now,  is compact. Now, there exists a non-empty open set  with its closure contained inside

. Why? Because  is nowhere dense, i.e.,   does not contain any non-empty open set,

that is the meaning of nowhere dense set. 

So, if closure does not contain, then  also does not contain any non-empty open set. That just

means that  is non-empty. So, there is a non-empty open subset , exactly same as we

did by taking a point and applying local compactness as before such that   is compact and

contained in . So, I am not writing all that here. 



So, I am taking an open subset  of  such that  is contained inside  and this  does not

intersect  . Repeat this process now, to get   such that   is contained inside  ,  

contained inside  and so on. So, keep doing that what you have got is a sequence of open

sets  such that  contained inside  for each . That means  does not intersect 

So, what we have, we have a decreasing sequence of open sets  , closure of each contained

inside the previous one and each of these is compact. Take  equal to the intersection. This 

clearly is in the complement of all the ’s. Why, because none of the 's intersects . So, 

does not intersect the union of ’s. 

And of course,  is contained inside .  are decreasing sequence of non-empty closed subsets

of  the  original   and   is  compact.  That  is  all  I  need.  (Once   is  compact  all   are

automatically compact anyway.) So, a decreasing sequence of non-empty closed subsets in a

compact set, their intersection is non-empty. That follows by the De Morgan’s law applied to

compactness. If finite union does not cover the whole space, then the entire union also will not

cover the whole space that is the property of compactness. 

So, we are producing non-empty open subset inside this  and outside all of the ’s. So that is

all what we wanted to prove. So, you see we got it in just three or four lines here. I elaborated it

fully, we have a complete proof of Baire’s theorem for locally compact spaces. 



(Refer Slide Time: 18:17)

Now, I am going to discuss something much deeper. But here I want full participation from you

people. If for some chance you feel that it is too much for you, you can take a break, you can sit

aside and think a bit, but make a sincere attempt to try this one, this is the way one becomes a

mathematician or one starts doing research work.

See, you have observed two phenomena; (i) a complete metric space is a Baire’s space, (ii) a

locally  compact  space  is  a  Baire’s  space.  So,  immediately you should ask what is  common

between them, what makes both of them a Baire’s space? Where is the hypothesis coming from?

Apparently,  if  you just  look at local  compact  spaces  and  complete metric  spaces,  they have

nothing to do with each other.

Indeed, there are lots of complete metric spaces which are not locally compact and there are a lot

of locally compact spaces which are not metrizable either. So, what is it that makes both of them

Baire’s spaces? So, I have tried to explain this one in a set of exercises, which are all doable. In

any case, you can try them. Then your TAs will help you to solve them if you have difficulties,

only after you try. Otherwise, you can take it easy. For the exam purpose and so on we will not

bother you with this one that is what I meant by saying that you can take it easy. 



(Refer Slide Time: 20:36)

So, let us go through this exercises. just I am not going to tell you what is it but they are all easily

done. The first thing is every compact regular space is a Baire’s space. See, what we have done?

Locally  compact  space  is  Baire’s  space.  But  when  I  say  compact,  a  compact  space,  in  our

definition,  may not  be locally  compact,  remember  that.  So,  I  have  to  put  regularity  here  in

addition.

But the proof? If you have understood the proof of locally compact space is Baire’s space just

done above,  you can prove this one also.

Next every compact Hausdorff spaces is a Baire’s space. This is the consequences of one of the

earlier exercises, if you think properly.

The third thing is every open subset of a compact Hausdorff space is Baire’s space. If you prove

(iii), (ii) will also get proved as a special case. But why I have given it like this first you prove

this (i)  and (ii) and then reduce (iii) to (ii) Directly proving (iii) that every open subset of a

compact space is Baire’s space that will take you to more effort. 

Now, all  these  three  exercises   tell  you that  there  are more Baire’s  spaces  than just  locally

compact spaces or complete metric spaces. Only for that reason I have stated them here.



Now, comes the crucial thing. Every  set in a compact Hausdroff space is a Baire’s space. So,

 concept comes here. Remember  just means intersection of a countable family of open sets.

Open set in a compact Hausdorff space is a Baire’s space is exercise (iii). From open set you

have come to  sets here. So this is the set of first 4 exercises. Once you have done them, we

will turn our attention to complete metric spaces.
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Indeed, metric space hypothesis is not fully necessary, you can just work all of these things in a

pseudo metric  space.  A pseudo metric space is  just  a  metric  space except  the property  1 of



definiteness need not hold:  need not imply , that is all. I am just recalling that.

So, take a pseudo metric space. It will also give you a topology. Show that every closed subset in

it is a . 

So,  now, we  have  what  one  single  property  common to  both these  families,  pseudo metric

spaces, every closed subset is a  . And here every   set in a compact Hausdroff is a Baire

space. So, that must be something. That is the key for these two things to have Baire’s property.

(Refer Slide Time: 23:57)

So,  let   be  a  bounded  and  complete  metric  space.  The  boundedness  can  be  always

achieved, because every metric is equivalent to a bounded metric--- by just taking ; that

will  be a bounded metric always and it  will  give you the same topology. So, this is a mild

restriction but it is needed in this exercise. Start with a bounded and complete metric space.

Now, let   be a compact  Hausdroff space?  Let   denote the topology induced by this

metric   on  . Let   from  to   be a topological embedding. See, here you have

metric  space,  here  you  do  not  have  any  metric,  but  both  of  them  have  topologies.  In  the

topological sense, let  be an embedding.

Embedding means what? A continuous mapping which is a homeomorphism onto its image. 



Suppose for every bounded continuous function  from  to , you have an extension of that to

the whole of , a continuous extension. Now, how can I can talk about continuous extensions?

 is embedded here, so you can think of  as a subspace of .

More precisely all that I want is a continuous function , so that  is . So, suppose all the

above conditions are true. Now, for  each   belonging to  ,  let   from   to   denote the

function, viz., the distance from ,  is equal to distance between  and . This distance  is

the metric coming from  here.

With this function, I want to define a map  from  to   by the formula   is the

infimum of , take the modulus. So these are all non-negative real numbers,

take their infimum. So, there you will get a non-negative function on . 
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What is this? This has all the characters of a metric except it is not exactly a metric; it is a pseudo

metric. On , i.e.,  thought of as a subspace of  is the same as , i.e. 

is equal to , the original distance. So, what has happened is that  is an extension of  on

 to the space . So, d hat is not a metric perhaps, it may fail to be a metric but it is a pseudo

metric.

Also,  is continuous on , remember  has already a topology on it.   will give another

topology on . We have to wait for that yet. So, but this  is continuous on . And hence,

the identity map from   to  is continuous.



The fourth property is that the image of   under   is a closed subset of  , in the new

topology, pseudo metric topology it is a closed subset. That is why I have done all this. I have

put an arbitrary metric space inside   inside   which is a compact metric space. Now,

 becomes a  set in . So, this will really complete the picture why complete metric

spaces and locally compact spaces have this beautiful property namely, being Baire’s space, they

share this property. 
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So, that is the conclusion of this last exercise which you can read by itself, but you will have to

wait to see the full thing, you will have to wait till chapter 5, when we will do compactifications

of various things. Namely, a locally compact Hausdroff space can be compactified what is called

as one-point compactification. 

Whereas,  a  pseudo  metric  space  can  be  compactified,  what  is  called  the  Stone-Cech

compactification  and  so  on.  That  will  fully  complete  the  picture.  But  that  requires  some

preparations. Till then you can take these things granted. 

After we finish chapter 5, you can again come back to these exercises, part of this exercise you

might have solved by that time and then we will be able to see the full picture. So, that is enough

for today. So, thank you. So, we meet again next time.


