
An Introduction to Point-Set-Topology – Part II
Professor Anant R. Shastri

Department of Mathematics
Indian Institute of Technology Bombay

Lecture 07
Local Compactness

(Refer Slide Time: 00:17)

Hello, welcome to NPTEL NOC an introductory course on Point Set Topology part II. So, today

we will do local compactness. Both compactness and Lindelofness can be termed as properties

which are global. Several topological properties have certain local versions also. Often it may

turn out that global version of a property may not imply local version of the same property.

For example,  we have studied connectedness  and also locally  connectedness.  Connectedness

need not imply local connectedness. On the other hand, you know the first countability can be

thought  of  as  the  local  version  of  second countability,  but  second  countability  implies  first

countability. So, do not jump to the conclusion either way. That is all I want to say. In general,

one should not expect a global version of the property to imply a local version of the same.
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Compactness  is  another  important  property  which  admits   a  local  version.  In  the  study  of

topological vector spaces, we have already made an ad-hoc introduction to this concept in part

one. Let us now consider it in full generality. So, whatever we did in the study of topological

vector  spaces  that  was  an  ad  hoc  thing.  That  will  be  recovered  automatically,  we  are  not

abandoning it. 
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Let us begin with a definition. Start with a topological space . We say  is locally compact, if

for every point  and every open subset  in  such that  is inside , there exists an open

set  such that  belongs to  contained in  contained in  and  is compact. 

So,  at  each  point  and  each  open  set,  this  should  happen.   can  be  thought  of  as  compact

neighborhood of . Why this is a neighborhood? Because it contains an open subset around  and

we have assumed that it is compact. The compact and closed neighborhoods.   is closed also.

So,  compact  and  closed  neighborhoods  of  a  point  they  form  a  fundamental  system  of

neighborhoods at that point. It  just  means that for  each open subset containing  ,  there is  a

smaller one in the system, that is the meaning of fundamental system of neighborhoods.

This is just another way of saying that  is locally compact. It should happen at all the points of

. So, the definition of local compactness is some what like the definition of continuity. For a

function, we first define continuity at a point and then continuity on the whole space means

continuity  at  each  of  these  points.  It  is  similar  to  that.  So,  that  is  the  definition  of  local

compactness. Now, I want to tell you that there are other definitions slightly weaker and weaker

and so on.
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So, let us be careful about this definition. So, I repeat, a space is locally compact if and only if

each of its  points,  there is a neighborhood system consisting of compact  neighborhoods and

closed  neighborhoods.  Note  that  this  definition  of  local  compactness  regularity  comes



automatically.  See  that  at  each  point  of  ,  there  is  a  fundamental  system  of  closed

neighbourhoods (not necessarily. compact ones) is the same as saying  is regular.

So, perhaps my definition of local compactness  is too strong. Anyway it is not my definition. It

is there in the literature. Out of the several definitions I have adopted this definition of local

compactness.  So, I want to tell  you that some authors prefer to have a weaker condition for

locally compactness. Below, we give two such instances which are very much common. There

are many others. We cannot go on dealing with all of them. These two are quite important also,

so, I would like to incorporate them here in a theorem.
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Start  with a  topological  space.  Consider the three conditions here,  three different  statements.

Final conclusion is that the third one implies the second one implies the first one. If  is regular

or Hausdorff then all of them are equivalent; (i) implies (iii) as well. What are these statements?

The first one is very simple namely, for every point of  there exists a compact neighborhood,

which you may write , that is all. 

The second statement is slightly more elaborate: for each point   where   is open in  ,

there is a compact Neighborhood  of   such that   is contained inside . So, this you can

reformulate by saying that  belongs to ,  contained inside ,  contained inside  and 

is compact.



The third one is our definition of local compactness. 

Note that  the difference between (ii)   and (iii)  is  that   belongs to  ,   contained inside  

contained inside  and  is compact is (iii) whereas, in (ii) some compact set comes between 

and ;  itself may not be compact. So, that is the difference between (ii) and (iii) you can see.

Thus (iii) will automatically implies (ii) because I can take  in place of .

(ii) implies (i) is also automatic because for each point you can take  to be the whole of , then

there is a compact neighbourhood. So, three implies two implies one these are very easy. 

So, what I want to show you that under Hausdorffness or regularity, statement (i) which is the

weakest here implies (iii), namely our definition of local compactness. So, these three things go

hand in hand.

Quite often the underlying topological space is regular or Hausdorff, there are two schools of

topologists. Some of them take regularity all the time, some of them take Hausdorffness all the

time. (There are very few people who do not deal with either regularity or Hausdorffness.) So in

that case, all these three definitions are equivalent. This is very, very important to notice. So, that

is why I put it as a theorem here. So, let us give the proof.
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The proof of a part is what that is what if I told you that is three implies two implies one. Now,

let us come to prove of (b). Under regularity, take  belonging to  where  is open in . By the

hypothesis (i), we have an open set   and compact set , such that  belongs to  which is

contained inside . So, this is the hypothesis (i). 

Now, I use regularity.  There  exists  an open set   such that   is  inside   contained in  

contained inside this open set with  .   is open subset around  ,   is also an open set

around , so  is an open subset around . So, regularity gives you an open set  with 

lying in between. Now,  obviously is inside  also, and  is contained inside . Therefore

 is a closed subset of . But  is compact. Therefore,  is compact. 

So, this implies (iii). So, we are done with one part of part (b). The second one is instead of

regularity, assume Hausdorffness.
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Now, suppose  is Hausdorff, start with a point  and let  be an open set around  and 

contained inside   which is compact,  just  like in the previous case.  Being a subspace of a

Hausdorff space,  is also Hausdorff. Now,  is compact and Hausdorff. Therefore from one

of our previous results,  it  is  regular. So, now   is  regular.  Therefore,  as seen above   is

locally compact. So, I am using this earlier part here so that I do not have to work again too

much.

So,  I can assume  itself is regular and then by the previous part it is locally compact. However,

if you are not convinced of this argument as to why I can assume  itself is regular, let us prove

(iii) directly. Now, suppose  is any open set in  and  is inside . Then  is open inside

 and it contains . Hence by local compactness of , we get an open set  in  such that 

is in  contained in the  contained in  contained in .

So, here I use the local compactness of  and  is neighborhood of . I am writing this

 here just to indicate that I am taking the closure inside  . And of course,   is

compact. That is important. If I can show  is open in  and its closure  in  is equal to

, then I am done. That then the proof is over and that is precisely what I want to indicate

now.

Now  is open in , which is open in  itself. Therefore  is open in  itself. Next, 

is a closed subset of   because it is compact subset of a Hausdorff space  . It  follows that



 is also closed in . Therefore,  is contained in . In any case,  is a subset

of  . Therefore, the two are equal.

So, this is the fact which allows us to say instead of writing this new symbol here, I could have

taken  that is a justification. Once you observe that  itself is locally compact you can go

ahead and replace it by  itself. This is the justification.  Some justification was needed, because

closures are being taken in different subspaces. Take an arbitrary set  subset of  subset of ,

the closure of  in  and closure of  inside  they can be quite different. In general what we

have  is a subset of . So, that is why I needed to justify that step. That is all. This

completes the proof of the theorem. 
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So, here are some example. (i) an indiscrete space with more than one point is an easy example

of a locally compact space which is not Hausdorff. An indiscrete space is actually compact also

because what are the open sets there? the only open sets are empty set and the whole space. So,

these spaces are non Hausdorff spaces.

(ii) Any infinite set with co-finite topology satisfies property (ii) but it is not locally compact,

why? Because the closure of every non empty open set in the co-finite topology the whole space.

So, every non empty open set is dense. So,  belongs to , where  is proper open set. Then no

matter what neighbourhood  you choose,  will not be contained . It will be the whole of

space  . So, any infinite set with cofinite topology satisfies (ii) but does not become locally



compact  in  our  definition.  So,  under  Hausdorffness/regularity,  the  three  conditions  are

equivalent but this co-finite topology is neither Hausdorff nor regular. That is the problem. But

there are such interesting examples wherein property one property two property three maybe all

different, property one is true for all indiscrete spaces.

(iii) An open quotient map preserves (i) because all that you need is a compact neighborhood. An

open map preserve open sets Being continuous also, it preserves compact sets also. So, you will

get a compact neighborhood of the image points. Similarly, an open quotient map will preserve

(ii) also. But not necessarily (iii), namely our definition of local compactness.
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So,  in  part  I  we  have  studied  an  example  of  infinite  cyclic  group  acting  on  .

Namely,  the  action  was  given  by  ,  where   is  an  integer.  So,  

coordinate is multiplied by ,  coordinate is divided by . This is a topological action of the

discrete  group  .  So,  this action was used  to  give several  counter  examples  in part  I.  This

quotient space is a  space, but it is not Hausdorff. The images of  and  in the quotient

space cannot be separated by open sets. That is what we have seen anyway. So that is why it is

not Hausdorff. 

If it were locally compact in our definition, then it would imply that it is regular and regular 

will be Hausdorff. But we know it is not Hausdorff. Therefore this quotient space is not locally

compact. The  action automatically gives you open quotient. So, this is an example of a locally



compact space,  is locally compact, , beign an open subset is also locally compact.

This we know. This is very easy to see directly also. Given any point not equal to , you can

take a closuer of an open ball around that point not containing . The closed balls in  are

compact. That is what we have seen. So,  is locally compact. But this quotient space is

not locally compact in our definition.
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Here is a remark. A compact space need not be locally compact. In the definition (i) it is true

because for each point you can take the whole space as a neighborhood which is compact. But in

our definition, it does not work all. To get a counter example what you have to do is to start with

a space Y which is not locally compact in our definition such as the ones which I have given

many examples here already, there are many and then you add one more point to get . I have

introduced this idea in part I very meticulously, because I want to keep using it. This is called

Seirpinskification.  So, this Seirpinskification has  the property,  it  adds one more point  to the

underlying set, but what are the neighborhoods of this point? only the whole space  that is all.

All other open subsets are open subsets of  they are there, that is a topology on .

Obviously, any open set which contains this extra point must be the whole space. Therefore, this

is automatically compact no matter what   is.   is a subspace of this but I started with a non

locally compact space at all those bad points of  , local compactness will fail inside   also,

because  itself is an open subset of . 



So, this way you can produce compact spaces which are not locally compact by converting one

into a compact space by just putting an extra point.
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The local compactness is not hereditary either. Recall  hereditary means,  whenever a space is

locally compact, all its subspaces must be locally compact. That will not be the case here. Again,

very easy to see this. So, here is an interesting example first of all before going further, take the

very interesting case namely rational numbers inside , very popular example. I want to say that

 is locally compact that we know because for every open set around a point you can take a

closure of an open interval around that point and contained in the open set. On the other hand,

we want to show that  is not locally compact. What is the meaning of that? For some point and

some neighborhood of that point the criterion fails. Here, we are going to show that this fails at

every point and for every neighborhood. You can choose any point and any neighborhood of that

inside .

What is a neighborhood? A neighborhood must be a neighborhood inside , only rational

numbers inside an open interval. Take such a thing take a point for example 0, take an open

interval  around   and then take all  the rational points in that that will  be the subspace open

subspace of . I want to say that there is no compact neighborhood of that one. 

For there were such compact neighbourhood, then there would exist irrational numbers  

such that the closure of   intersection with   will be contained in such neighborhood and



hene  compact.  But  closure  of   is  the  same  as   and  hence  closed  in  .

However, it is easy to see that   is not compact. Because  and  are irrational numbers

and  so  I  can  take  a  nested  sequence  of  open  subintervals   of   with  rational

coordinates, which cover .
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However,  the saving grace is that local compactness is weakly hereditary. Weakly hereditary

means every closed subset will have that property or sometimes every open subset will have that

property, so there are two versions of weakly hereditariness. Here, both cases will work. Every

open subspace  and every closed of space of a locally compact space is locally compact. So, then

you can combine them also, suppose, you start with a locally compact space and then take an

open subset that is locally compact.

Now, we will take a closed subset of that. That will also locally compact. So, you can play this

game. So, you get a family of subspaces, called locally closed subsets, very nice terminology

which means  subsets  which closed inside an open set  or  open inside a closed set.  So,  such

subspaces of locally compact space will be also locally compact.
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So, I want to call recall a few things here. In part I, we define a topological vector space  to be

locally compact just by the small  condition namely   has a neighborhood   with its  closure

compact. So, this was even weaker than our definition (i). Just that at one single point if (i) is

staisfied, we are done. But in the case of topological vector spaces, something happens at  , it

will happen at all the points by taking translation.

If there is an open subset around  translate it by any other vector, so that will be an open subset

around that vector, with its closure being the translation of the closure of the original open set.

That is because translations are homeomorphisms. Therefore, it will work for all the points. That

is not all.  It is so strong that we have been able to prove that under this condition the topological

vector space is actually linearly isomorphic to some finite dimensional Euclidean space. 

So, this was one of the important results  that we have proved in part I.  In particular,  ,  is

locally compact in our sense also, in the strongest sense.  To sum up it was enough to assume

such a weak condition to get the strongest form of local compactness for a topological vector

space. 

You will  meet  some  other  interesting  examples  of  non-locally  compact  spaces  in  algebraic

topology,  wherein  you  have  to  take  unions  of  infinitely  many  spaces  perform  some

identification. So, I will not be able to go through that here. 



Lindelofness is also one property which admits local versions, exactly the way we have done

above, namely in three different ways if you like, just like for local compactness. This has been

studied by some authors. There are papers you can Google-search them.

However, local Lindelofness does not seem to have many customers. So, we will not discuss it

any  further.  So,  that  is  enough  for  today.  There  will  be  many  more  things  about  local

compactness. We will discuss it next time. Thank you. 


