
An Introduction to Point Set Topology (Part 2)
Professor Anant R Shastri

Department of Mathematics
Indian Institute of Technology, Bombay

Lecture No: 17
Arzela Ascoli’s Theorem

(Refer Slide Time: 00:16)

Hello,  welcome  to  NPTEL NOC  course  on  Point  Set  Topology  Part  II  Module  17.  As

promised last time we shall do some function space study today, Arzela-Ascoli's Theorems.

So, in this section let us address ourselves to determine compact subspaces of the Banach

space that we have introduced, namely, space of all continuous functions from X to R and

continuous function  to . 

So,  both of  them we handle  simultaneously,  no separate  proof or  no separate  techniques

necessary. Here we start with  which is a compact metric space. And then the vector space

 of all continuous functions from  to  (or ) is given a norm viz., the supremum norm.

That is how it becomes a Banach space. As before, we shall use the notation   to denote

either  or . 
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I will make the historical comments later. So, we need a new and important notion here, viz.,

equicontinuity. Let  be any metric space. Let  be a family of functions  from  to .

This is the starting data for us. We say  is equicontinuous if for every , there exists a

 such that the distance between  and  is less than  implies distance between  and

 is less than  for all  in  and for all . 

So, this is an  definition. So, why it is called equicontinuous? Suppose, there is only one

function  . Then this is like uniform continuity of  , nothing else. But in the general

case, 's are the same for all . So that is why it is called equicontinuous family, so

this is a new name for new concept.  (Refer Slide Time: 02:58)



So, every member of an equicontinuous family is automatically uniformly continuous. If you

just read this one a single , this is uniform continuity. Also it is easy to see that any finite

family of uniformly continuous functions is equicontinuous because for each  we have .

Then you take  as the minimum of all these 's; that will work for all  simultaneously. 

So, finite families of uniform continuous functions is automatically equicontinuous. So, this

kind of notion is important only when  is an infinite family. 

(Refer Slide Time: 03:53)

So, here is the famous theorem of Arzela-Ascoli. Let  be a compact metric space. Then

a closed subset  of  (remember  denotes the space of all continuous functions from  to

)  is compact if and only if it is bounded and equicontinuous.

We are working in a Hausdorff space; you a Banach space is metric space and Hausdorff.

So, if you want a subset to be compact, you have to assume  is closed. So, that is a standing

assumption that  is a closed family of continuous functions from  to . 

It  will  be  compact  in  the  supremum-norm  topology  if  and  only  if  it  is  bounded  and

equicontinuous. So, this is the statement. One part of the proof is very easy. The second part

is a little involved. with a new technique which is quite illuminating. So that is what we have

to do some work. 

Start with a compact  . Then it is clearly bounded, because in any metric space compact

subsets are bounded. In fact, we know that it is totally bounded. 



To see equicontinuity, given   let   in   be such an  -net because I am

now using the total boundedness of this family . For each  equal to , , etc. upto , these

 are uniformly continuous and so we can choose  such that  is less than

 implies , by uniform continuity since  is compact. 

Let now  be the minimum of . You see I have already used the fact that there is

only finitely many of them. So as indicated before in my remark, I am taking the minimum of

this 's. Check that this  has the property that distance between  and  is less than  implies

 for all . 

Now you have to use the fact that these  is an -net. So, you have to do little

more triangle inequality business here. So, that much I am leaving it to you as an exercise. for

all  this will be true. So, from infinite set to the role of  the link is that this finite set is

an -net. So, that comes from total boundedness. 
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The converse part is much more involved. If these tow conditions are satisfied by , then you

have to show that this  compact. Starting with a bounded and equicontinuous family , we

shall show that  is sequentially compact. Then by our earlier theorem compactness of  will

follow.  

Since   is  a  compact  metric  space it  is  second countable also and  hence  separable.

Therefore,   has a countable dense subset. Let us fix one such. Any countable set which is

dense will do, no need to be anything special here. After all  is an arbitrary space and

we  do  not  know  anything  more  than  that.  Fix  one  such  countable  dense  subset

 of . 
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Start with a sequence say   in  . So I am calling it  . It is our aim to

show that this  has a subsequence which is convergent. So, what we are going to do is we

are going to produce a sequence of subsequences almost like improving   with each step

which will produce a subsequence which is convergent, finally. 

So, the first subsequence is chosen as follows: look at values of 's at the single point , viz.,

 and so on, the entire sequence evaluated at , at one single point. So, now

what we have got is a sequence inside  which is bounded because the entire . A bounded

sequence inside  or  has a subsequence which is convergent. 

So,  this  property  of  the  codomain  is  essential  here.  Convergent  subsequence  is  coming

pointwise, in the codomain, so we are using that here. So, it has convergent subsequence.  We

shall denote it by  and the corresponding subsequence  of  by . 

We shall now work with the sequence , and apply the same procedure to this , but with

the point , viz., we now evaluate  at ,  get a convergent subsequence of it and denote

the corresponding subsequence of  by  and so on. 

Inductively, choose a subsequence  of  such that the sequence got by evaluating it at

the point  is convergent.  
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So, here is a picture. We start with  and so on. I have picked up , in

the first row,   being the first element of the subsequence . There are many more terms



here,  I am not bothered about that. I am looking at a first term here.  Similarly,  from the

second row, I am picking up the second term of its subsequence  and so on. 

It is important that I am going forward viz,  etc is strictly increasing so that  is

a  subsequence  of  .  In  simpler  way  let  me  simply  put  ,  the   term  of  the

subsequence . 

(Refer Slide Time: 13:44)

Then clearly  is subsequence of . What is the property of this subsequence that is

what we want to know. So, in order to show that this sequence is convergent, it is enough to

show that it is a Cauchy sequence in . For each point if it is Cauchy what happens inside ,

(  or ) it will be convergent.

But here what we are showing is that it is a Cauchy sequence with respect to the metric of 

coming from the supreme norm. So, what you get is uniform Cauchy this Cauchy sequence

just means that in each point if you take those sequences in uniform Cauchy therefore you

will get uniform convergence automatically. 

So, let us not bother about this at all. Directly, I want to show that in the Banach space ,  is

a Cauchy sequence. Since  is already complete, (that we have already proved in part I)  

will converge in . But  is closed in , what happens? the limit, the limit will be inside .

So, we have found a subsequence of  which is convergent inside . 

So, how to prove  is a Cauchy Sequence?



So, what is immediate is the fact that for each fixed , the sequence  is convergent,

because after certain stage it becomes a subsequence of . All that I have to do is .

So,  once  it  is  subsequence  of  that  is  a  sequence  is  convergent  subsequence  will  be

convergent.  So, what we have achieved is a sequence which is convergent at this countable

subset , which is not arbitrary but a dense subset. From the density we want to conclude

that this  is convergent at all the points. So, what we will do is, we will just show that it is

Cauchy sequence that is all. (All this explanation does not mount to any proof!) 

Given  is positive, by equicontinuity of , we get a  positive such that  implies

, for all . You can choose anything here given  choose  so we will

do that one. Accordingly, there is some . 

Next, since  is a dense set, it follows that if you take the union of all open balls of any

positive radius say,  where  range from  to infinity, will cover the whole of . Every

point must belong to one of the open balls. Since  is compact you will get a finite subset

 such that  is the union of  ranges from  to  of the open balls . So,

we have got a -net for  itself now. So -net was coming implicitly for the family  here

now it is coming for   itself. That is the role of equicontinuity here.  So, what is the net

result? 
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Now for each fixed   look at the sequences  , only   of them. All

these are convergent and hence Cauchy sequences. Therefore you can find a uniform  such



that if  and  are bigger than , then . Each  up to , will

get , you take their maximum as .

Then for , the inequality will be true for all  up to . Finally, given  belonging to

, now let  be such that  is one of the balls as above. Then  will be at a distance less than

 from . Therefore, for  , I have this inequalities. So, what I do? I break it into

three parts by adding and subtracting  and then . So,  is less

than or equal to  by equicontinuity. So, this one comes from inequality, since  is inside in

this  ball.  Similar  conclusion  for  the third term.  The middle  term is  less  than   due to

Cauchyness. Therefore . 

This is true for all  . Therefore,  . So, this means that the sequence   is

uniformly Cauchy, (same as saying that it is Cauchy in , Cauchy with respect to the norm

that we have been using. This completes the proof.
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So, here are a few remarks. The total boundedness is replaced by merely boundedness here,

but what we have here is already under the assumption that  is a compact metric space. That

is how this is important. The equicontinuity together with compactness is taking care of that.

Remember that in the general theorem, in arbitrary metric spaces we want total boundedness

and completeness to get compactness. But we are not putting total boundedness on . It is in

 we are working, a function space. For that the equicontinuity helps us. 
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This type of results began with some work of Ascoli in 1884 or 1883. Ascoli and Arzela are

both Italian mathematicians, almost contemporary. Ascoli introduced a version of the notion

of equicontinuity and proved the `if'  part which was more complicated tah what we have

here. However, 10 years later, Arzela improved upon it by proving the `only if' part. I say

`improving upon it'   because he also brought much clarity to it.  His paper is much more

readable also in that sense. So, notion of equicontinuity belongs to Ascoli, but the present day

has  seen  contributions  from  many  other  authors  like  Frechet,  Schwartz  etc.  They  have

enriched it  with  many other versions which are quite often more general  and so on. The

original version of Ascoli is for only functions on a closed intervals inside  to .  

We immediately can generalize by replacing the codomain  by . There is no problem. but

there are many more other versions wherein the codomain can be replaced by what are called

uniform spaces and so on. 
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So, Ascoli-Arzela theorems have been of great use in differential equations, complex analysis

especially in Montel's theorem, Peter-Weyl theorem etc. For a more general result than the

one discussed here you may see Kelly's book which we have been referring to all the time.  
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So,  here  are  some  easy  exercises  for  you.  Show  that  in  a  metric  space  second  countability,

Lindelofness and separability they are all equivalent. The second exercise: show that totally bounded

metric space is separable and hence second countable. 

So, you see how different concepts are related. Of course only when we are working with metric

spaces. So, that is for today. Let us meet next Ɵme. Thank you. 


