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Hello welcome to NPTEL NOC introductory course on Point Set Topology Part (II). Today

we will do model 16, a new concept,  viz.,  total boundedness.  In a metric space,  there is

another important concept which is the consequence of compactness, namely, boundedness.

However boundedness itself is too fragile condition, because any metric can be equivalently

changed to a bounded metric without changing the topology. So, we are looking for some

version of boundedness property which is not so fragile.                 (Refer Slide Time: 01:30)



Once again, we go back to the link between abstract topology and metric spaces, namely, the

fundamental open subsets, the open balls. So, here is a definition. Let  be a metric space

and  be positive real number. By an -net in , we mean a finite subset  of

 such that the entire space  is contained inside the finitely many open balls with centres at

 and radius . 

So, these -balls are enough to cover the whole thing. And of course, if you take all the points

is always possible but finitely many points on. So, we say   is totally bonded. If for

every , there is -net. So, obviously, this is much stronger it if you have not taken -balls that

will admit a finite sub cover that is what it means, not all open sub sets are admitting finite.

So, this almost comes to very close to compactness.

So, these - balls are enough to cover the whole . And of course, if you take all the points as

centres, then clearly -balls will cover , but here we want only finitely many points. So, we

say  is totally bounded, if for every -positive, there is an -net. 

So, obviously, this is much stronger than mere boundedness. If you taken arbitrary open sets

in place of  ,  or  did not  fix  ,  then admitting finite  cover  would have been the same as

compactness. So, this condition of total boundedness comes to very close to compactness and

is implied by compactness, but may not imply compactness.
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So, total boundedness is some kind of restricted compactness; that is the first thing to notice.

Every open cover of  by balls of a fixed radius will admit a finite sub cover. It is clear that

any compact metric space is totally bounded. 

In general, it is not clear why a total bounded metric space should be compact. Also observe

that total boundedness implies boundedness automatically. Because all that you have to take

is  an epsilon net   and look at  its  diameter  and add  .  That  all.  Then the

diameter of  will be less than this number. So, total boundedness implies boundedness. 

In the Euclidean spaces, even the converse is true. Thus, our intuition may easily mislead us.

So total boundedness is much stronger than boundedness but in Euclidean spaces, you do not

have this problem. Indeed it is expected that the bounded need not imply totally boundedness

since the metric can be simply changed to a bounded metric all  the time, and hence eery

metric space would be equivalent to a totally bounded one. 

(Refer Slide Time: 05:01) 

So this  is  just  a  guesswork,  you know. But unless you see an example,  you will  not  be

satisfied.

Recall  that  if  a  Cauchy  sequence  admits  a  subsequence  which  is  convergent,  then  the

sequence  itself  is  convergent.  Thus in  a  sequentially  compact  metric  space,  (sequentially

compactness, remember what it is? every sequences has a subsequences which is convergent)

every Cauchy sequence will be convergent because it will admit a sub sequence which is



convergent and because the original sequence is Cauchy, it is also convergent (to the same

limit). 

This latter property is known as completeness; every Cauchy sequence is convergent means

completeness. So, somehow when studying the sequential compactness etc. we are forced to

think about completeness also. 

then,  there  is  another  important  property,  all  the  time used  in  analysis  of  metric  spaces

namely, compact metric spaces have the Lebesgue property. So, I will just recall what is the

meaning of Lebesgue property. There is a theorem of Lebesgue and the conclusion of the

theorem has been made into a property. Namely, for each open cover  of  you must find,

there exists a positive  such that the family of balls of radius  form a refinement of . If you

take any ball of radius   anywhere in the space, such a ball will be contained in one of the

members of . That is the meaning of refinement. 

So, that is the Lebesgue property. So, it is also worth recalling that if  satisfies the Lebesgue

property, then every continuous function from   to any space   is uniformly continuous.

Continuity implies uniformly continuous, on a compact space. You know closed intervals,

more generally, closed and bounded subset of  and so on that you come across in analysis.

You see that all that you need is the Lebesgue property for this uniform continuity. The full

force of compactness is not necessary. 

So, how far can away are these properties from compactness? Our next aim is to obtain a

characterization of compact metric spaces in terms of these properties, Lebesgue property,

sequential compactness, total boundedness, and so on. 
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So, that is  the  theorem here.  There  are six equivalent  statements,  giving five criteria  for

compactness for a metric space. You start with a metric space. Then the following conditions

are equivalent. 

(i)  is compact,.

(ii)  is countably compact.

(iii)  is limit point compact.

(iv)  is sequentially compact.

(v)  is totally bounded and has the Lebesgue property.

(vi)  totally bounded and complete.

So, these first three are the ones which we have studied last time. These two new criteria are

there  now.  Lebesgue  property  and  completeness  are  old.  Total  boundedness  is  the  new

concept. So, let us go through the proof of these equivalences. Proving (i) implies (ii) implies

(iii) implies (iv) implies (v) implies (vi) implies (i) that would have been ideal and easiest

way. 
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Somehow I am not able to arrange it in that way. So, I will just follow a slightly different

approach here. The implications (i) through (v) and back to (i) will be done. But equivalence

of  (iv) and (vi)  will be done separately.

(Refer Slide Time: 09:17) 



So, observe that a metric space is both  and -countable. This is what I have already told

you last time using which, we have seen that (i) implies (ii) implies (iii) implies (iv). Last

time we have seen more than that, but right now, concentrate upon, these statements.

So, these two implications and these two implications we are left out right now. So, let us

prove (iv) implies (v) namely, this is sequential compactness sequentially compact metric

space. So, we want to show that it is totally bounded and satisfies the Lebesgue property that

is what we have to show. 

So,  let  us  now prove  (iv)  implies  (v),  namely,  assume that   is  sequential  compactness

metric  space.  So,  we want  to  show that  it  is  totally  bounded and satisfies  the  Lebesgue

property. 



To prove total boundedness. Suppose on the contrary, that there exists  positive such that no

finite number of balls of radius  cover the whole of . (There is some  for which there is no

-net, that is the negation of total boundedness). Choose a point , any point, does not

matter. Having chosen , inductively, how do you choose ?  will be

chosen in  setminus union of all balls of radius  around , for . 

So,  we  have  proved  total  boundedness,  without  any  problem.  Things  are  quite

straightforward. In the second part what we have to prove? 
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Lebesgue property. Lebesgue is also very easy here. Suppose on the contrary  does not sat-

isfy the Lebesgue property. This means that we have an open cover  which has no Lebesgue

number. What is the meaning of that? No  is a Lebesgue number for .  



That means for every positive integer , (instead of , I use ) there exist  inside , such

that the ball of radius  around  is not contained in any member of . For instance for

, you get  will not be contained in any  and so on.

By sequential compactness, there is a subsequence  of  which is convergent to some

point  .  Let   belonging to ;   must be in one of the open subsets because   is an

open cover. Choose   such that   is contained inside  . By convergence of  ,

there exists  such that for all for all , all the  must be in , the open ball of

radius  around . 

Now if   also, then   is contained in   which is contained in  . But

 is a subsequence of  means that  for some  and so  is

contained in  which is a contradiction. 
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So,  now, I  will  prove  (v)  implies (i)   namely,  total  boundedness  and  Lebesgue  property

together  imply  compactness,  just  like  we  observe  that  countably  compact  and  Lindelof

implies compact. So, the proof is that simple. So (v) implies (i) is also not difficult. 

So, let us go through the proof. Start with any open cover  and let  positive be its Lebesgue

number. Now by total boundedness, there exist finitely many points   such that balls of

radius   arond them cover  . Since each of these balls is contained in some   in  , we

finitely many  will cover .  So that is all.
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So,  we are  left  with  the  tasks  of  proving  (iv)  implies  (vi)  and  (vi)  implies  (iv).  (iv)  is

sequentially compactness and (v) is total boundedness and completeness. So, these are also

not difficult.

For  (iv)  implies  (vi),  already  we have  SC implies  total  boundedness,  while  proving (iv)

implies (v). In the remark (iii) above, we have also proved that SC implies completeness,

namely, start with a Cauchy sequence, it has a subsequence which is convergent, therefore it

is convergent. So, (iv) imply (vi)  is done. (That is why I have chosen to prove that instead of

other conditions.) 
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Now, finally, I have to show that (vi) implies (iv). Let  be any sequence in . The idea is

to show that it has a subsequence which is Cauchy. By completeness, the Cauchy sequence

will converge. You want to show that the sequence has a subsequence which is convergent.

Instead you just show that it is Cauchy. 

Now, from total boundedness for each integer , let us first get a finite subset  of 

such that  is covered by balls of radius  around the points of .  

What is ?  is -net. Total boundedness of  gives you this by taking . By the

pigeon-hole principle, there exists an infinite subset  of , and a point ,  is in 

implies . That is because there are only finitely many balls covering . 

For  the  same reason,  there  exists  an infinite  subset   of   such  that   in   implies

 for some  . Inductively, having choose  , there exists an infinite

subset  of  and a point , such that  implies . 

Now we can construct a subsequence of  which is Cauchy. Choose  to be any number
in . After choosing , let   be any number in  which is bigger than . This is
possible because each  is infinite. 
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Then we claim that this sequence  is a Cauchy sequence. So, this construction  was not

all that obvious. We have done even more complicated constructions elsewhere anyway. 

So, why  is a Cauchy? Given , take  such that  is less than . Then if  and

 are greater than  and  will be inside , both of them will be here. 

What the meaning of that? The distance between them is at most  which less than . So,

given every , I have given you some  such that beyond that the distance between any two

members of the subsequence is less than . That means that the subsequence is Cauchy. 

So,  that  completes  proof  for  this  big  theorem,  at  least  it  looks  big.  So,  we  have  these

implications that we have shown.                     (Refer Slide Time: 23:30) 



So, here is an exercise which I will just go through. You are welcome to solve them and get

your answers checked. The first one is an easy application of theorem 4.10. 

Take  to , a continuous real valued function, where  is countably compact. Then show

that   is bounded and attains its extrema. So, this is similar to what we remarked namely

Lebesgue property implies uniform continuity. So,  under compactness, this is the standard

Weierstrass's theorem: any continuous function on a compact set to real numbers is bounded

and attains its extrema, both the maximum and minimum. This exercise shows no need for

compactness, just countably compactness is enough. So, try your hand.

Next, let   be a metric space. For each   positive show that there exists a subset   of  

which is maximal with respect to the property that for any two distinct points  the

distance between  and  is bigger than . 



For example, for  , you can begin with any point  . The second point should be at a

distance  atleast  one  from   and  so on.  However,  the  third point  should be  such  that  it

distance from both the earlier points must at least one. (It can easily happen that you cannot

have more than a single point also, for instance, if the diameter of  itself is less than one.)

So, that is that exists a maximal subset that is what you have to show. Apply Zorn's lemma).

Further you have to show that if   is limit point compact then any such   is finite. In a

compact metric space, you have proved such things. Now, you are asked to prove the same

for limit point compact metric spaces.

Next,  show that every metric space which is limit point compact is separable and hence,

second countable. In particular, conclude that every compact or countably compact metric

space is second countable which you might have proved in a different way elsewhere. 

So, next time we will prove the very important functional result namely, Ascoli's theorem.

Thank you. 


