
An Introduction to Point-Set-Topology (Part II)
Professor Anant R Shastri

Department of Mathematics
Indian Institute of Technology Bombay

Lecture 12
Partition of Unity

(Refer Slide Time: 00:16)

Hello, welcome to NPTEL NOC introductory course on point set topology part II. So, module 12

today. We continue with the study of paracompact spaces. This time partition of unity. So, we

shall now discuss one of the most important properties of paracompact spaces, namely that they

admit a large number of continuous real valued functions.
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As usual, we shall begin with a definition. Take any topological space  . By a (continuous)

partition of unity on , continuity is assumed without specifically mentioning it, so, I have put it

in a bracket, partition of unity on , we mean a family of continuous functions , indexed by

, all  these functions are defined on the whole of   to  the closed interval  ,  first  of

satisfying  the  condition  (i)  for  every   in  ,  you  have  a  neighborhood   of   such  that

 for all  belonging to , except for finitely many . 

So, that is like saying that, the family is locally finite, i.e., the family of support of 's is locally

finite. In particular, for every  , since there are only finite many of   such that   not

zero, their sum makes sense. Even if I write the total summation  as  ranges over all of , this

will be a finite sum for each . The second condition is that (ii)  that sum must be equal to . So,

this is the second condition.

The second condition gives the name `partition of unity'. The constant function  on the whole of

, is broken up into a family of functions, each of them continuous and the sum total is equal to

. What is the meaning of a sum of arbitrary family of functions? This local finiteness which

automatically implies point finiteness ensures that the sum makes sense. But we will see that

local finiteness is important here not just point finiteness.



Instead of an arbitrary space , if I have some subset of , then I can talk about partitions unity

which are smooth,  or  and so on. So, you can put those adjectives there for the members of

a partition of unity. However,  because we are studying them on arbitrary topological spaces,

there is no notion of differentiability. That is all.
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The  condition  (i)  we  may be  called  locally  finiteness.  It  is  the  same  as  saying  that  family

, of open subsets of  is locally finite. It follows that at any given point  in , the LHS

of this second sum here this sum here is a finite sum and hence makes sense.

So, condition (ii) which ensure that the sum total is equal to   means, in particular, that this

family of open subsets is a cover for . Every  must belong to  for some . If it is not

true, then the sum total would be  at . 

Given any open cover   of  , we say that the family Theta is subordinate to  , if this

family  is a refinement of . See this family is indexed by  and this is indexed by .

So, indexing sets are different;  they may be different  or they may be the same. What is the

meaning of refinement? For each member here there is a member there which contains it. That

itself gives an association, a function on the indexing sets, called the refinement function. We are

not writing all that elaborately right now. When theses things are crucial you may have to write

down those things also, refinement functions and so on.
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So, here is a theorem. Take a paracompact and Hausdorff or regular space. Let  be an open

cover for . Then there exists a partition of unity on it which is subordinate to . Recall that

support of a real or complex valued function is the closure of the set of all points at which the

function is non zero. Here we assume that  is contained in some . Actually,  you will

see later,  that  the family of supports of   itself  will  be a refinement  .  The key to this

theorem is the following concept and a lemma.
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So, this is where we are going to use Zorn's Lemma also later on. So, first of all we have a

couple of definitions. A family  of subsets of  is said to be a point finite if each point of 

belongs to at most finitely many members of . Here, what I already told the last time, but we

repeat it here because it is necessary. A locally finite family will be automatically point finite.

But here is another definition which is new and needed for us to proceed with.

Take  , an open cover for  . A refinement   of   is called a shrink of   if the closures of

members of  is a refinement of . Of course,  itself must be an open cover for . So, this is

what we would like to have just not just arbitrary refinement, such a thing is called a shrink. If

the family of closures of each  inside  is a refinement of . If  is contained inside  for each

 inside , that is the order refinement. This is slightly stronger than just a refinement. 
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Next,  the Shrinking Lemma is something about  just  a  normal space.  Here,  we do not bring

paracompactness, the paracompact Hausdroff spaces are normal. So, some kind of normality is

built in there and hidden inside paracompactness. You add Hausdroffness then it comes out. So,

though there are possibilities of proving a result without the shrinking lemma, but we will go

through  this  one  so  that  the  shrinking  property  corresponding  to  normality  is  brought  out

separately. So, that is the whole idea of putting this lemma separately. 



Take a normal space,  be a point finite cover. Then for each  belonging to , there exists open

set  such that  contained inside  and the family  is a cover for . So,

if you call this new family , then  is a shrink of .

Therefore, this will be called a shrink you see, so that is the whole idea, so  is a shrink for

this one. The family  is a cover because in the definition of shrink we are not putting the

cover. So, this shrinking lemma tells you that there is a cover which is a shrink of the given

family, indexing will be the same here for each  you have , that  comes back to you

in fact  is inside. The statement must be clear here..

(Refer Slide Time: 10:38)

But the proof depends upon using Zorn's lemma. So, how do we use Zorn's lemma? We start

with a family Gamma of pairs , where  is a subfamily of  and  is a function from  to

tau the family of open subsets inside  is the topology on ,  is a function now. For each

member here you will get an open subset here with the property that the closure of   is

contained inside   for all   inside the sub family  . The second thing is that the those  

were  is inside  and all those  which are not inside , they cover the whole of .

See that if  is the whole of  then this would be a total shrink. Since in general this not the case,

we use the word partial shrink, for members of . What we are looking for is a member of  in

which  is the whole of , so nothing is left here. So, that is the statement of the lemma.
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So, how do we prove it? On this family , we put a partial order. Say  is less than or equal

to the other one ,  if and only if the family  is a sub family of this  and the function 

is the restriction of the function  to .  Why this family  Gamma is non empty? Answer is using

normality, we can see that each singleton  for  belonging to  can be taken as a domain for a

partial shrink.  and rest of the members of  they cover. 

So, if you take the union of all   that is  one open set use another open set, these two

together they cover the whole of . The complements will be disjoint closed sets with normality

you can take as much slightly open subsets containing side the closure of all these open sets,



union of all this open set that will be contained inside this   and so on. So, you get a partial

cover. So, this is easy part.

(Added by the reviewer:  If the rest  of the members of   cover  the whole of  ,  then define

. Otherwise. the complement of the union of all these other members is a closed set 

contained in . By normality, there is an open set call it  such that  is contained in 

contained in  contained in . This  will do the job.) 

Now, if you have a chain inside , chain means what, a totally ordered subset, indexed by a some

totally ordered set  , say  . I must show that the chain has an upper bound

inside . So, for that I take  as union of all these ’s that will be some subfamily of , that is

fine. But now, we want a function on .

So, define  from  to  to be such that restricted to  to be . Now  is a total ordered set,

if  and  are given, either  is less than  or  is less than  that is the meaning of total order,

say   is less than  . Once that is a case,   is contained in   and   restricted to   is  .

Therefore, this definition of  makes sense on the whole of . there is no ambiguity here.

So, we have got a pair   which is not yet a member of . We have to verify that it is a

partial shrink, then it will be a member of  . Automatically it will be the upper bound for the

chain. 

So, we have to show that this pair is a partial shrink. So, property (i) is verified easily,  is

contained in  , by the very definition here because they are all  ’s. See property (ii) is the

important thing. How do we see (ii)? Namely, why all the ,  inside  together with those

members of  not in  cover the whole of ? So, to see we need to use the point finiteness of 

. I have no other way to prove this one. 

Take  belonging to . Then  belongs to only finitely many members  of . If 

s are not in , even if one of the  is not in , it will be in this part and therefore, the point  is

there, no problem. It is the other case, viz., when all of  are in , which gives you problem

because you have shrunk these members, you have made them smaller, so the point maybe left

out. So, you have to worry about that.



So, if one of the ’s is not inside  you are happy. On the other hand, suppose if all the ’s are

inside  ,   are in  . Then it follows that there are indexes   such

that  belongs to  for each . Therefore, you can take the maximum of these ’s, say , so

that there will be one single  to which all 's will belong.

So, this is where the property of being a chain is used. By the property (ii) applied to this , it

follows that  must be in  for some  inside  because it is not in other part, that is all.

So, all that I wanted to show you is that x is covered by  for some member  of . But for

this  in  we have  by the definition of . So,  is an upper bound of the

chain.
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By Zorn's lemma, we have a maximal element in . Remember this itself may not be maximal

element. This is an upper bound for the chain. There is a maximal element in . We do not know

what is that maximal element. But that is good enough for us. So, we shall denote it by .

Remember  is a subfamily of ,  is a shrink function. Now, it is enough to show that  itself

is equal to .

But if  is any member of , and not in , then look at this set  which is union of all , 

inside  and all  so set  is not equal to , and inside .  is an open subset of  such

that together with  it covers the whole of .

It follows that the complement of this open set is is a closed subset of . Therefore there exists

an open set which we call  such that the closed set  is contained inside  contained in

 contained inside . Normality is used again now. Normality was used to show that   is

non-empty that is all. So, right in the beginning right at the end. 

(Added by Reviewer: It may happen that , in which case, we can take .)

Now, the function  extend to  as above, (for all members of  other than , this is the

old   itself)  gives  you a  member of   this  is  a  larger  than the  member  .  That  is  a

contradiction. Why is the contradiction? Because we assumed that   is not . That completes

the proof of the shrinking lemma.
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So, I have already made this remark. For relevant things you can read from Munkres book that

will give you a proof of the fact that for a paracompact Hausdroff space, every open cover has a

shrink, no assumption of local finiteness on the cover, local point finiteness on the cover. But do

not confuse it with the statement above. Just on a normal space if you have an open cover, it may

not admit a shrink.
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So, here is a comment and then we will stop here. The actual proof of the theorem is now very

easy. So, first let us go through that proof.

We may assume that  is locally finite. Because by paracompactness, so start with the open

cover, replace it by locally finite refinement. So, you can assume the locally finiteness for the

given cover itself. Now choose a total shrinking function , which is possible because we have

proved  that  a  paracompact  Hausdorff  space  is  normal,  and  this  local  finite  implies  point

finiteness.



Using normality again, obtain continuous functions  from  to  such that the closures of

's are taken to   and  ’s are taken to  . This is by normality. Whenever you have two

disjoint closed subsets you have such functions. This  is locally finite, local finiteness of the

family  follows. 

Therefore, the function  which is sum of all ’s make sense. In a small neighborhood of every

point, only some finitely many of them will be non zero. Since each  is continuous on such a

neighborhood, it follows that the sum  is a continuous function on the whole of . 

Moreover, since we have total shrink, given any  , it belongs some   and that that

. At the rest of the indexes it will be either   or positive. Therefore, the sum total is

always bigger than or equal to . Now, all that you have to do is take . You

have a continuous function which is never , therefore, you can divide by that function. It is still

continuous. Now, summation  will be summation  which is equal to . 

What is the zero set of ? It is the same as the zero set of  Therefore, the support of  will be

contained inside the corresponding . So, the proof existence of partition of unity, finally. It is

very simple, very easy. So, major work went in proving the shrinking lemma thing here, namely,

using Zorn's Lemma.
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So, here is a comment. It is easily seen that paracompactness is weekly hereditary, namely every

closed subspace of paracompact space is paracompact. Just for the sake of clarity write it down

as  an  exercise.  However,  it  is  not  hereditary  for  the  same  reason  as  compactness  is  not

hereditary, weakly hereditary, yes. For closed subspace, fine, but for arbitrary subspaces, may

not be.

How to see that? Starting with a non-paracompact space if there is one (we will show that there

are such things), you can always add an extra point, take the Sierpinskification to get a compact

space which is then paracompact as well. We shall discuss an example of a non-paracompact

space later. Thank you, that is enough for today.


