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Hello, welcome to module 11 of NPTEL NOC course on point set topology part II. So, today

we should pick up another important topic, paracompact spaces. Among several notions of

compactness, some of them we are going to study, It seems that paracompactness is the best,

which  captures  certain  features  of  compactness  and  yet,  encompasses  a  large  class  of

interesting topological spaces. 

The feature that we are looking for is as usual, having a large number of continuous real

valued functions on a space. So, this is one of the interesting properties of paracompactness

that we will prove. 
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So, let us begin with a formal definition or two. Take any set X and two families of subsets of

, , and . This  is called a refinement of , if every member of  is contained in

some member of  .  Pay  attention  to  this  one.  I  am not  saying  that  the  family   is  a

subfamily of . Not necessarily. 

Sometimes that is also possible. Actually, if  is a subfamily of , then this condition fro

refinement is obvious because you can take any member here in , the same member will be

there in  , which you can take the same member which will obviously contain itself. So,

refinement is much better notion than just taking subfamilies.    

Actually, it comes from the practice of giving a subdivision of a division of an interval 

or any interval , in real analysis. The collection of all smaller intervals in a subdivision is

a refinement of the collection of all subintervals of the given division. The word `refinement'

is sometimes used in Analysis also. 

However, in the context of  is a cover for , which just means that members of  together

contain all the points of , i.e., union of members of  is ,  in that context, we will use the

same word `refinement' with  a slightly stronger meaning, namely,  is a refinement of ,

as before and  and if  is also a cover of .  

If   is  a  topological  space,  a  refinement  in  which  all  members  are  open,  (respectively,

closed), will be called an open refinement (or a closed refinement) accordingly. So far, we

have actually made four different definitions here. 
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Suppose  is a topological space. We say a family  of subsets of   is locally finite if at

each point  in , there exists in a neighbour  of  such that  intersects only finitely many

members of . So, this is not the property of the space . It is just the property of the family

of subsets .  

Similarly, we will have another definition needed later on.   is called point-finite a given

point  of   can be found at  most  in  finitely  many members of  .  Clearly,  locally  finite

implies  point  finite,  but  not  the  converse.  Anyway,  I  will  recall  the  definition  of  point

finiteness when it is necessary. The following two simple results are the keys for usefulness

of this local finiteness concept. 
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So, these are the two things here. Namely, take a family  of subsets of , which is locally

finite. Then the family of closures of members of  is also locally finite. The second thing is

that the union of all these closures of members of  is a closed set. 

Remember that if you have a finite union of closed sets, then the union as also closed. But if

you take an infinite union, then this will not hold, in general. So, here is the case where this

happens. So, it is in particular, it follows that the closure of the union of all members of  is

equal to the union of the closures of members of . So, that is because of local finiteness. 
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So, let us have a look at how this works. In (a), I want to show that the family  is

also locally finite. Given  , let   be a neighbourhood of   such that  intersects only

finitely many members of  . Now if   is a member in   such that   is empty, then



 is also empty, because   is an open subset. Therefore,   intersects closures of only

finitely many members, in fact precisely the same members. Proof of (a)  is over. 

Now part (b). This is slightly more complicated. Actually, this we have seen in part I of the

course but never mind, I will repeat it. Take a point in the closure of this union and we must

show that it is in the closure of one of the members. That will prove that this union is closed.

So, first of all, choose an open neighbourhood  of   such that   intersect only finitely

many members of this family say, . We claim that  must be in one of these

. That will be enough. 

Suppose, this is not the case. Then what happens? For each , we would get a neighbourhood

 of  , such as that,   must be empty. because   is not in   which is a closed set

already. (I could have taken complement of this  for , that is all.) Now you take  equal

to the intersection of 's along with the original . That is a neighbourhood of . Now it

follows that  is empty for all , which just means that point  is not in the closure

of this union. So that is absurd, because you started with the point  in the closure. 
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Now, let us make a definition, the one we were aiming at. A space is called paracompact if

each open cover for it has a locally finite open refinement. I want to recall each of these terms

once again. You have an open cover for  . Let us call this  .   is a refinement of  

means, first of all, that each member of  is contained in a member of  and  itself is a

cover for  . All members of   are open as well.  Finally,   must be locally finite. i.e.,



each  point  of  ,  there  must  be an open  neighbourhood which will  intersect  at  the most

finitely many members of this refinement. 

For each open cover of , if you have a locally finite open refinement, such a space will be

called paracompact. It is somewhat similar to the definition of compactness, wherein each

open cover has a finite subcover. We are not insisting on a finite subcover here. Finiteness is

replaced by local finiteness, which is much more general.  Not only that, we are not insisting

upon that this is a subfamily of the of the original cover. It is a refinement. So, you may have

many more open sets here, but each new member will be smaller than some old member. So,

that is the beauty of this definition.  

Since  any  finite  family  is  automatically  locally  finite,  it  follows that  a  compact  space is

automatically paracompact. You start with any open cover, first take a finite sub cover. That

will be refinement already. Now you take a refinement. You do not have to because any sub

cover is a refinement. You do not have to worry about local finiteness because this is already

finite,  so  automatically  it  is  finite  also.  So,  compact  spaces  are  paracompact.

Paracompactness is very useful, really useful in the study of manifolds, in the absence of

compactness. 

In  fact,  it  is  also  useful  in  the  study  of  spaces  other  than  manifolds,  which  are  called

simplicial sets, simplicial complexes, and what are called CW complexes and so on. So, I

cannot dwell  much into those objects. Those are the things which you study in algebraic

topology. 
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A locally compact, Lindelof space is paracompact. So, we are now up to what are the kind of

spaces which will become paracompact, what kind of conditions we can impose to ensure

paracompactness. Of course, definition is there finally, but how to verify whether some given

sapce is paracompact or not?  

So, suppose something is locally compact and Lindelof, that is paracompact. So, this is the

second result of this kind here, the easy one was compact implies paracompact. The proof of

this result itself is very illuminating. So, you should pay attention to that. 
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I am going to prove the result in several steps. Each step itself is worth remembering. Each

step itself is a kind of property. First step is that there is sequence   of open sets in  

such that each  is compact,  is contained inside  contained inside  etc., and   is

the  union  of  all  's.  So,  every  locally  compact  Lindelof  space  can  be  written  as  an

increasing union of open sets such that closures these open sets are compact. 

So, that is what we are going to prove. Using local compactness and hence regularity for each

 belonging to  ,  we first  find  open  neighbourhood   of   such  that  such  that   is

compact. Next, using the Lindelof property, we find a countable subcover from .

Every  open  cover  of  a  Lindelof  space  admits  a  countable  subcover.  Let  us  rewrite  this

countable  subcover  merely  by  .  We  do  not  worry  about  which  

comes from what point of . We are only worried about this countable sequence of open sets

whose closures are compact and their union covers . That is what we are worried about. 



So, you see part of that has already come. But now we have to arrange them so that the entire

thing becomes an increasing sequence. This kind of argument  is  quite  useful  in  measure

theory. You start with one of them, any one of them. So, take   equal to  . Since   is

compact, and all these  is together cover this . 

So, some finitely many of them will cover it. So, there is some integer  , such that   is

contained in the union of . Take  to be the union of these .

Each  is open, remember? So,  is an open set. It contains this contains . And if you

take the closure of  that will be equal to the union of the closures of 's, .

Being a union of finitely many compact sets,  is compact. So, what we have done is setting

up an iteration process here.  has been fattened to , which is fattened further to  so that

 is compact. Now we will repeat this. Repeat the same procedure for  . Again,   is

contained inside the union of . 

So, there will be some finite number  . Obviously that finite number can be taken bigger

than . In some funny cases, it may happen that you get an open cover consisting of no new

members at all, since our original labeling does not have any such properties. But you can

always take successive  to be larger than . Nobody stops you from that. That  bigger than

 bigger that  and so on. 

Then given any point , say it is in . It follows that  belong to . Therefore union of

all the 's is equal to .
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So, here is the picture how things are going on. You started with  equal . The closure of

 is represented by the set along with its boundary curve.   and   are covering the

boundary that is . Other  may also be there but you do not worry abut them. Now you

take the union of  and  as your . Now look at the closure of  which will be

compact.  So,  again,  some  ,  etc,  will  come,  which  will  cover   and  go  on.

Ultimately, all the  will be taken care.
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So, here is a remark before we go further. A space which is a countable union of compact

spaces  is  called a  sigma-compact  space.  What  we have  proved above implies  that  every

locally compact Lindelof space is sigma-compact in a strong sense. What is the strong sense?

That  these  compacts  subsets  are  actually  closures  of  open  subsets  and  the  open  parts

themselves cover the whole of . 

So, that is the strongness here. So, we shall study sigma compactness a little more, through

some exercises later on. This is also an important concept, but mostly it is used in analysis. 
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Now let us go to the step 2 toward proving that the space is paracompact. So, in this step, we

claim that any space which satisfies the property stated in step 1 is paracompact. So, now we

are not  going  to  use  local  compactness  or  Lindelofness  separately.  We will  just  use  the

properties (i), (ii) and (iii) here of the sequence of open sets . With such a family of open

sets in , we are to prove that the space  is paracompact.

So, here is again, another typical step which we have to learn. Start with a family , any

open cover for  . We shall extract a locally finite open refinement for this. For notational

simplicity,  let  us  also  define   and   to  be  empty  set.  See  we have  taken  the

countable family  indexed from  onward. Without any harm, we extend this family



with three more members, all empty sets, so that you can write down the inductive step very

easily. That is the whole idea.  

Define for each  , and each alpha, look at  . Throw away this closed subset

from the open subset , that is still an open set. See, I want this to work from , and that

is why I have introduced these harmless members  and  all empty sets. In the case

of ,   makes sense, but it is actually  , because this part is empty, does not

matter. 

What I insist is that this is an open subset, this is an open subset set, so, its intersection with

, denoted by  is an open subset. So, this is now defined for each  and each positive

integer  . Clearly the family   this is an open refinement of  . So, what are the

things that we have to verify?  are open and so are . That is fine. Each  is contained

in . That is also fine.

These themselves cover the whole , why, because whatever point  you take, it is of all in

some . After that, it must be also in one of the 's. You take the first  for which, this

happens. Possible because 's are increasing sequence of open sets, covering the whole of 

. Then  will be in . So, it is an open refinement. We shall now find a countable subcover

of this, which happens to be locally finite as well. 

So, this itself may not be locally finite. So, I will pass onto a subcover. Subcover means

what? It is a cover, but only a few members will be taken. How many? Actually we will take

countably many members from here.  (Refer Slide Time: 26:59)



So,  this  is  what,  the  picture  here  says.  This  rectangular  thing  represent  .  This  is  the

increasing sequence of our open subsets 's which cover the whole of . These ’s also

cover the whole of . So, what I am doing here is . The closure of  is being

thrown away.  

All  these  happening  only inside  .  So,  you  look at  only  this  portion  and  subtract  this

portion. This heavily dotted bar is . As alpha varies, you will get a lot points from . After

that, if you vary  as well, you will get the entire of the space . So, that is how ’s have

been constructed. Now, some countable subfamily of this is going to be locally finite as well

as a cover. So, that is what we have to find out. 

(Refer Slide Time: 28:26)



For each fixed  , look at the compact subset   of  .  Here I am not

intersecting it with . Look at these concentric ellipses here. Inside each open set I have a

compact subset. It is covered by the family , where  is fixed. Therefore, we will have a

finite subfamily of them covering this part, call that finite family .  

What is the purpose of this one? Members of , you see, they will not intersect  at all.

They are contained somewhere here somewhere like this. The construction is over. All that I

do now is put   equal to union of all  ’s. Each   has finitely many members. So, the

union will be countable. Each member of  is a member of . So,  is a subfamily of

 and hence a refinement also. 



Since  is an increasing union of , given any , let  be the smallest  such that  is

in , which means that  is in , but not in . So, that is the smallest . Then  will be

inside , therefore belongs to some member of . Therefore, every member of 

is inside some member of . So this  is a cover for . 

Finally, why  is locally finite? Given any , we take  such that   is inside . It is

clear that  does not intersect any member of . So, in this picture, it is the other way

around. If you take something here in , then members of  will contain that element.

So, when the index   is high enough, the point will not be in  .   may intersect only

members of . How many members are there? Finitely many members.

So, the family  itself will serves the purpose of local finiteness. Therefore,  is locally

finite. So, that completes the proof of this theorem.
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We now consider an important result that says that every paracompact Hausdorff space is

normal. Similar to the result that every compact Hausdorff space is normal. On the way, we

shall prove that it is regular also. So, the proof is somewhat similar to what we have seen

earlier, which seems to be the key step to prove normality. We first have regularity here, just

like in the proof of the fact that compact Hausdorff space is normal, which we have proved a

couple of days before. 
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So, let us go through the proof of this one. Every regular paracompact space is normal. Start

with any two disjoint closed sets . Pick up a point , pick up an open neighbourhood

 of  such that  contained in the compliment of  which is an open set. Then the family

 such that   belongs to   along with   is an open cover for  . So, we have just used

regularity here. 

 and   are  disjoint  closed sets.  Now we have  got  an open cover  for  .  Now we use

paracompactness. So, let  be a locally finite open refinement of this family and let  be the

collection of all members of  , which are not contained in  . Being a refinement, every

member of  will belong to  or is contained in . I do not want those which are contained

in . 

I want to concentrate on this part. That is  . In particular, each member of   is disjoint

from , because it is not contained in some  which is contained in . So, all these opens

subsets, which are in , none of them intersects . So, if  is equal to the union of members

of , then  will not intersect  and of course,  contains . 

So,  is contained in  and  is empty. I repeat here, look at members of . They are

contained in this part. And  is in the complement of , so, that is why they do not intersect

 that is all. So, we have got one part, namely, an open subset around  , which does not

intersect . 
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Now, look at  . It is locally finite, because it is a subfamily of   which is locally finite.

Therefore, for each  , there is an open neighbourhood,   of   such that only finitely

many members let us say  belonging to this  will intersect  . So, look at

these 's, since they are members of , there are  such that  is contained in .

Now you look at  equal to the intersection of this  with the complement of the closures

of . But if you take finite intersection of the complements of the closures,

that will the open subset, So  is open. 

So,  is neighbourhood of  for each  and disjoint from . So, let me prove this one.

Why this is a disjoint from ? Once you have done that we have finished the proof roughly

by taking  equal to union of all , we get  and  will be open subsets which are disjoint. 
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So,  let  us  see  why   is  empty.   is  .  That  is

contained in . But  is nothing but .  See the

brackets are important. Here, I am taking unions here, this intersection here, here I am taking

intersection, this is also intersection. The intersection of three sets. But the second set itself is

a finite intersection and the third one is a union. Therefore, it is equal to the intersection of 

with the union over   ranging from  to  , of the second set intersected with . Since the

second set intersected with any  is empty, we get the whole thing equal to  intersection

with the empty set. 

So, we have found out two disjoint open subset   and   respectively containing  and  .

That completes the proof that, a regular paracompact space is normal.

Added by the reviewer: Alternatively, you can directly take  equal to the complement of the

closure of the union of members of . Since,  is locally finite, we have closure of  is the

same as the union of closure of  where  ranges over . Since each such  is contained in

some , closure of  is contained in closure of  and hence is disjoint from . Therefore,

their union is also disjoint from . That means  contains . Clearly,  is disjoint from . 

The next step will be there to prove that Hasudorff paracompact space is regular. 
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So, that is the next step. A Hasudorff paracompact is normal. What we have to do? You have

to just prove regularity and use the previous theorem. So, let   belong to  ,   be an open

subset such that  is inside . For every  in the complement of , choose a disjoint open sets

 and  such that  is inside  and  is inside ,  and  are distinct and then I can do this

because  is a Hasudorff space. 

Now, as we vary   over the compliment of  , these  's will cover the compliment of  .

Along with , that will be an open cover for , say . So, this admits a locally finite open

refinement say  . That is where paracompactness of   is used. Again, as in the previous

step, take only those members of  which are not contained in  here. They may be coming

from here, they have to come. If it is not coming from here, it must be a subset of some

member here. Obviously, this being a sub family, it is also locally finite. Take  be an open

set such that   is inside  and  meets only finitely many members of , which we will

label as . Each  will be contained in some ,  are subsets of . See, these

steps are identical, almost identical as in the proof of a previous theorem. At least the idea is

identical.
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Now take  to be intersection of  with , where  are chosen as above.  are

disjoined from corresponding  . I do not have to take the complement and closures and

complements and so on here they are readymade open subsets which are disjoint from that

one. Clearly, this  is an open set containing , because each 's are all neighbourhoods of

. We claim that the closure of  is inside . That will complete the proof of regularity of .

Given , you and found  such that  is in  and closuer of  contained in . That is

the regularity. 

So, let  which union of all , where  ranges over . This  is an open set and  will be

contained inside , because together with , they cover the whole of . After all, we started

with  as a covering of . 

Therefore, it is enough to show that   itself is empty. Since  is an open subset, this

will imply that  is empty. So,  will be contained inside . So, look at . Same

argument as in the proof that  is empty, yields that this set is empty. 
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So, in conclusion, paracompact Hasudorff space is normal.  Plus  is already there, so, it is

. So, we have done some major topological properties of paracompact spaces. The next

thing is functional properties. Namely what are called partition of unity. Partition of unity is

one  of  the  major  purpose  of  introducing  paracompactness  by  the  great  mathematician,

Dieodonne. So, thank you. Let us, do this partition of unity next time. 


