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Hello and welcome back to the lecture on applied econometrics. In this lecture, we are going 

to talk about the assumptions of regression models with non-stochastic regressor. Now, this is 

essentially a summary of all the different diagnostics that we have been doing all throughout 

in the past so many weeks. And we will first summarize these assumptions for a non-

stochastic regressor.  

 

So essentially, I told you in the previous lecture that the regressors that we have been using or 

the assumptions that we are making that our regressor is essentially non stochastic. And first 

we will talk about all the assumptions that we need to make for regression modelling when 

we are dealing with a non-stochastic regressor. So, let me write down the first assumption 

and you are actually familiar with all the assumptions. 

 

Because you actually have done that when you have done with the functional specification 

when we talked about multicollinearity, when we talked about heteroscedasticity, when we 

talked about autocorrelation, when we talked about model specification and so forth. So, all 



the different learnings that we had so far, it is going to be a summary of that. So, the first 

assumptions that you can write is that the model is linear in parameter and correctly specified. 

 

Now, you know about what I mean here, right. So, when I say the model is linear in 

parameter, so that means that the parameters should not have any power or it should not have 

any term that if I differentiate that it remains in the equation. So, let me actually again let us 

recap it. So, let us say Y is equal to we have an equation beta 1 + let us say beta 2 X 2 and let 

us say there is a power beta 2 and then we have our error term. 

 

Now, in this regression equation now if I cannot have this here, because it is not linear in 

parameter and this is a problem because when I let us say differentiate, when I actually 

follow the least square method to estimate the parameter, so what I do basically I do this, I 

take partial differentiation of Y with respect to beta 1 and beta 2, these are my parameters. 

Now, if I have a linearity parameter, then what I will have?  

 

In one equation, I will get my beta 1 vanished, in another equation I will get my beta 2 

vanish. But that is if I have nonlinearity that is not going to happen. Then I will have even 

after taking the partial differential I will have this beta 1 and beta 2 present, both the beta 1 

and beta 2 are present in the equation and that would be a problem, we cannot estimate the 

beta 1 and beta 2. So, it has to be linear in parameter. The second is it has to be correctly 

specified and we already know what it means.  

 

By correctly specified, it means that the functional specific has to be correct. So if it is a log 

model in the Y variable or the other X variables, we have to ensure that we actually have the 

log very well, not the just X variable. So, you have to take a log of it. So, if it is a quadratic, 

we have to take a quadratic. So, whatever be the functional specification, we have to find that 

and that we have already dealt in detail how to actually ensure that we get the right functional 

specification.  
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The second point is that there has to be some variation in the regressors. What I mean by 

that? So, if X is my regressor here and there X cannot have just the same value for all the 

different observations. Why is that because I know that my beta 2 the regression coefficient is 

summation X i – X bar and Y i – Y bar and then I have summation X i – X bar whole 

squared. Now, if all my X's are same, so the denominator is going to be what? Denominator 

is going to be 0. 

 

The moment I have my denominator 0, my beta 2 is going to be undefined. So, my 

regression, my software will not actually give me a output because of this thing. So, we have 

to have some variation in the regression. Now, a follow up of let us say we can write 2.1, so, 

when we do a regression, we have to ensure that the X variables should not have an exact 

linear relationship and we have already seen it, we have already talked about in detail, recall 

dummy variable trap.  

 

So, what we mean by X variables should not have an exact linear relationship? So, there can 

be some linear relationship, but it cannot have an exact linear relationship. So, at the moment 

you have exact linear the relationship, so you have a problem called collinearity, which we 

have talked in detail in multicollinearity.  
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So, again to recall what is the problem, the problem is let us say you have a dummy variable. 

And let us say you include the base dummy and when you sum up all the different values of 

the dummy variable, so essentially for all observations your D i is going to be 2. So there is 

no variation in the D i, so all your D i is going to be 1 and you remember that you have 

intercept and intercept let us say beta 1.  

 

Now beta 1 the intercept and it has you can think that there is a variable multiplied with beta 

1 and the variable is going to have a value of 1 that is constant one. Now, because for all the 

different values you will have this one constant here and you have this D i, subtotal of D i is 

constant, so essentially your program is unable to distinguish, it will think that the same 

variable is represented twice. So, it is called a problem of collinearity.  

 

So, the moment you have exact collinearity, exact linear relationship, you will have the 

product collinearity because your software or basically your regression equation it will look 

like the same variable is represented twice. So you cannot have a regression with that. So, 

that is what we call there cannot have an exact linear relationship. So, we may allow some 

amount of linear relationship and that is what we have seen in the chapter of 

multicollinearity.  

 

So, this is our second assumption. Now, coming to the third assumption, the third assumption 

is the expectation of the disturbance term has to be 0. So, the error term, whatever error term 

we are having, if we take an expected value of the error term, it has to be 0. So, there could 

be in some observation your u i could be positive, in some observation your u i could be 



negative, but the moment you take expectation, you to basically take an average, the average 

is going to be 0 that is something you have to have.  

 

Now, let us assume that your error term has some run in that like some trend, some tendency 

in that. Usually, the intercept term that we have that takes into account that any tendency or 

trend in the error term. So, the beta 1 that we have that actually captures that tendency, so 

essentially we cannot have any run in the error term. So, let us say we have our equation Y = 

beta 1 + beta 2 X 2 and let us say I have an error gamma i. 

 

And let us say gamma i actually it has some run, it has some trend. Now, I in order to ensure 

that my expectation of u is 0, so if I take expectation of gamma i, it is going to give me some 

u let us say, some value that is not zero, so which is not satisfying this condition. If in this 

particular case since gamma i has some trend, the moment you take expectation, it is not 

going to give you a value of 0, you are going to get a value of u.  

 

Now, when you have this, essentially you can write that you can actually represent gamma i 

= some u + u i. So, the trend that you have along with an error term which is random for 

which; this condition is satisfied. Now, if you replace these in this equation, if you substitute, 

so then what you will have is, let me use a different colour, y = beta 1 + beta 2 X 2 + u + u i, 

alright. Now, you see your us is a constant term it can very well go with beta 1. So, 

essentially what you write is beta 1 + u, you have a beta 1 prime + beta 2 X 2 + u i.  

 

So, essentially the reason I did this little bit of analysis is basically to show you that if you 

have any run, any trend in the error term, so it will be captured in the intercept term. And we 

really do not care so much about the intercept term when you do regression. So, it really does 

not matter if the beta 1 and beta 1 prime are different or whatever. So, essentially as long as 

this condition is satisfied, we are good. Expectation of error term has to be 0. So that is my 

third my assumption.  
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My fourth assumption is the disturbance term is homoscedastic. So, you know already know 

about what is homoscedastic, what is heteroscedastic. So, let me write it mathematically. So, 

if I write sigma u i squared = sigma u, so there is a constant variance. So, what means is that 

each observation is drawn from a constant population variance. So, how is that possible? 

How is your variance for each draw is going to be constant?  

 

So, ideally it should be somewhere it is going to be a little more, somewhere it is going to be 

a little less and in very rare occasion you can have something like this, but you remember the 

concept of double structure variable. So, it is a case essentially of a double structure variable. 

So, essentially it is when you write this equation, we are writing it before actual realization. 

So, it is basically before you actually it is basically an expectation of the variance.  

 

So, I can write it like so from the previous condition I know expectation of an error term, 

expectation of u i = 0 and I know I can represent variance as expectation of u i – u square and 

if I write it so expectation of u i square – 2 u i u + u square. Now, this is going to give us this 

expectation of u this being 0, I will actually have only, this will be this because of the 

previous condition I already have.  

 

Now, I should actually write expectation of u, not the i. So with this, we can actually say that 

the variance of; it is a case of constant variance where this is going to be sigma u square. So, 

this expectation of the variance is going to be constant, alright.  
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Now, the next condition that we have already seen is a condition which we addressed in the 

case where we talked about autocorrelation and that is there should not be any relationship 

between the error terms for different observations. So, covariance of u i and u j has to be 0. 

So, there should not be any relationship among these error terms.  

 

Now, sometimes it may happen when you look at your data or look at the error terms after 

you fit your models, you can see that the error terms might show some positive tendency or it 

can actually show positive, negative and positive and negative and so forth and you already 

know this is a case of positive autocorrelation or it can show some pattern like this, some 

zigzag patterns, and you know this is a case of negative autocorrelation, ACR negative 

autocorrelation.  

 

So, usually, we do not want this kind of situation to exist and that is why you have to have 

and in all these cases, your covariance u i, u j is not equal to 0, but you want to ensure that 

covariance of u i and u j is equal to 0 because you do not want to have any pattern in your 

error term. So now in the previous assumption and in this assumption, essentially what we are 

talking about?  

 

We are talking about if you can actually take care of this problem, you can take care of the 

problem omitted variable bias also, you can take care of the problem if there is any model 

specification or if there is the measurement error. So, by taking these problems into account, 

you actually take care of these problems. And when you have the assumption 4 and 5 right, 

so you can actually ensure that your error term is IID random variable. 



 

So we know the importance of IID random variable. Our error term is IID random variable if 

I ensure homoscedasticity and no autocorrelation. 
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Now I will come to the sixth assumption. And the assumption 6 says is that there has to be 

normality in the error term. So, what I mean by normality in the error term and why I need 

my error term to be normal? Now, my normality of the error term it actually is important. 

First let me answer the why part. You remember the equation we have written when we wrote 

b 2 = beta 2 + summation X i – X bar into u i – u bar by sum total of X i – X bar whole 

square over all n. 

 

Now, you see that the moment you have this component this because of this error term here 

your b 2 is getting a distribution. At the moment your u has a normal distribution; your b 2 is 

also going to get a normal distribution. Now, in fact that is actually good for us and why it is 

good for us? Because the moment I have my b 2 it is having a normal distribution I can apply 

things like t test or f test which are essential. 

 

Which are crucial to basically get your regression equation right, I mean you have to estimate 

you have to do the significance test, you have to do the confidence interval, you have to get 

the confidence interval and you can get that only if you can run this t test and f test. So, that is 

why the normality of error term is really functional because you can get a distribution for 

your b 2.  

 



Now, even if usually the error term is normal, the reason is, actually we need to go back to 

our central limit theorem and it is a particular theorem by Linderberg, so Linderberg-Feller’s 

central limit theorem. So, what it says is that if let us say there are a lot of influences on a 

particular variable. So, on my error term, there are a lot of variables of which I am not aware 

of, they are influencing; they are not present in the model, they are influenced by outside. 

 

Now, as long as these outside influences are not very strong, my variable of interest is going 

to have a normal distribution. So, that means my error term will have a normal distribution, 

so usually that is why we actually get my error term to have a normal distribution. Even if let 

us say there are cases where your error term does not have a normal distribution, let us say 

this is a case 1. 
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Even if your error term does not have a normal distribution, if it is an IID random variable, 

which is non-normal, even then you will be able to perform your t test and F test. So, you will 

find t test and F test. And another case could be it is not even IID random variable, but if you 

have a very large number of observations, you can actually perform your t test and F test. So, 

essentially because your error term is either normal or it could be IID non-normal, so in most 

of the cases this is not a very big problem.  

 

So, these are the assumptions that you need to ensure when you have your regression model 

with a non-stochastic regressor. And as you have seen, what I have done essentially just 

summarized all that I have been doing for the past few classes. So, with this I will end the 



lecture here. And in the next lecture, I am going to talk about the same assumptions but for 

stochastic regressor. Thank you. 


