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Hello and welcome back to the lecture on applied econometrics. We have been talking about 

model specification, and specifically we are talking about omitted variable bias. So there are 

at least two types of model specifications we talked about to get the right variable. And 

second is to measure the value of the variable. Now we have been talking about the first 

problem to get the right variable and the first part of the first problem is the problem of 

omitted variable bias, so where do we actually exclude a relevant variable, now what happens 

there?  

(Refer Slide Time: 00:59) 

 

So when we are talking about omitted variable bias, just to recap we said that it actually 

influences my Y variable of interest, the dependent variable through two routes; one is 

through error term and second is through the other variable present in the model. And we 

already talked about this one, this essentially the problem of heteroscedasticity and 

autocorrelation, which I have explained in detail previously. Now, we will talk about this 

particular problem, this particular problem when X 3 is actually influencing Y through the 

route of X 2.  
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Now before I do that, let me actually explain the problem of omitted variable bias a little bit 

in detail so that you understand the relationship with the true model and the fitted model in 

case of omitted variable bias. And this is something I have taken from Christopher 

Dougherty, true model and you have fitted model. First let me write down the true model. So 

let us say the true model is Y is equal to let us say beta 1 + beta 2 X 2 + beta 3 X 3 + some u. 

 

And in the second case U = beta 1 +; let me actually reduce the size a little bit, beta 2 X 2 + 

error term. Let us say I have fitted a model and that model let me use a different color for 

fitted model. Let us say this is Y = beta 1 + so I have these or I would rather write so in case I 

am fitting a model, so I write b instead of bets, we are estimating that b 1 + b 2 X 2. I do not 

have an error term here and Y let us say this is the one case I got this model. In the other case 

I got this model b 2 X 2 and b 3 X 3.  

 

So, if these are the possibilities, so if this is the true model and let us say 2 students have got 

two different fitted models. So, this is fitted model 1, fitted model 2. So, if this is what we 

get, so then in this case, what I am getting I actually have omitted an important variable 

which is X 3. I did not include X 3 in my model. So, this is a problem of omitted variable 

bias, let me write with a different color, this is a problem of omitted variable bias.  

 

Whereas, this one if the student has actually fitted model b, this b 1 and b 2 X 2 and b 3 X 3 

whereas the true model is this, so, then this is a true model. So, I will write this is a correct fit, 

we have got the right model. On the other hand, if let us say the true model is this, actually Y 

is only explained by X 2 and there is no X 3 component present and the student has actually 



got the model, he actually got b 1 + b 2 X 2, so exactly he has only one explanatory variable 

which is X 2.  

 

So in this case, the model is true model, here the model fitting is correct. On the other hand, if 

this is the true model and a student has actually ended up fitting this model, so he has actually 

included this component, which was irrelevant, so this is a case of where inclusion of an 

irrelevant variable. So, these are the two problems that we see when we are talking about 

model specification and when particularly talking about inclusion or exclusion of a particular 

variable of interest.  

 

So, we are talking only this one right now, so this is something we will talk about later. And 

within omitted variable bias, we are talking about error route, u route and X route.  
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So, let us now; we have explained the u route, let us now talk about the X route. When Y is 

getting influenced by X 2 whereas X 3 is omitted, so X 3 is actually influencing Y through X 

2, so that is a problem that we will talk about. Now, let me actually draw another diagram to 

illustrate it even in a better way. Let us say this is my Y alright, this is variable of interest and 

this is my X 2 and this is my X 3. 

 

So, how exactly can draw it? So X 2 is influencing Y directly and then there is a direct 

influence of X 3 on Y too, but because I am not having X 3 in the model, so what is 

happening is that this X 2 is actually mimicking the effect of X 3 and that is being present in 

the Y model. So, whereas this particular component is actually absent. So, this is how we can 



actually explain the influence of, the basically try to understand the problem of omitted 

variable here.  

 

So, let me actually explain mathematically. This is a graphical illustration, we have got an 

intuitive understanding and this is a graphical understanding and let us now talk about the 

mathematical illustration of it.  
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So, let us say in this true model Y = beta 1 + beta 2 X 2 + beta 3 X 3 and u and fitted model is 

Y hat = b 1 + b 2 X 2. Residually, I have omitted this variable, alright. So, let us now try to 

understand what is happening to my regression coefficient. So, what beta 2 is actually 

representing here? How much it is able to explain and what component? So, let us try to get 

that.  

 

So we know by definition b 2 is equal to we know the definition of the coefficient that is 

basically X 2i X 2 bar into Y i – Y bar and then in denominator I have X 2i –X 2 bar whole 

square that is how actually estimate coefficient in a simple OLS, this is a simple OLS. Now, 

let us substitute the value of Y i and y bar from the real model. So then it will be is equal to X 

2i – X 2 bar into Y i is going to, I am going to get the value from this model. 

 

So essentially this component is going to go vanished beta 2 X 2i beta three 3 X 3i + u i – 

beta 2 X 2 bar – beta 3 X 3 bar – u bar. So, that is what you have in your numerator and 

denominator is going to be the same. That is X 2i – X 2 bar whole square. So, it has become 



pretty lengthy, I mean a little daunting also, but nothing to be is actually very simple here. So, 

let us actually get the terms separately.  

 

I wish I could do it in the same page, let us see. So, if we can let us say I take X 2i – X 2 bar 

and then here I have let us say there is a beta X 2i and there is a beta, sorry beta 2 X 2i and 

beta 2 X 2 bar. So I can take this beta 2 here and I can have an X 2i – x 2 bar and then I will 

have another term that is beta 3. So here for X 3i and X 3 bar so if I take these, so that will be 

X 2i – x 2 bar into beta 3 three and then I have X 3i – X 3 bar.  

 

Iti s really getting a little cluttered, but let us see. And then I have this u i and u bar. So all I 

have is X 2i – X 2 bar into u i – u bar. Therefore, all the terms I actually divide by this 

denominator, so we will see what we get from here. So, let me actually use this space on this 

page. So let me actually write it. So here I have you see this term and this term actual results 

into this term and all you are left with is beta 2. 

 

Then in this term, you again get this term and this term, so X 2i X 2 bar into X 3i X 3 bar 

with a beta 3, but the denominator is different. So, what you get is this beta 3 into summation 

X 2i X bar into X 3i – X 3 bar by summation of X 2i – X 2 bar. And the third term is X 2i – 

X 2 two bar into u i – u 2 bar and then you have the same denominator here X 2i – X bar, 

really cluttered, but let us try to make sense from here.  

 

I did not want to go to the next page because then I had to copy all these things from this 

page. Actually see so I have a beta 2 here and I have a beta 3 into some component and if you 

look at it carefully, so it is basically the correlation coefficient between X 2 and X 3. So, you 

will see that I am basically measuring the covariance in the numerator, this is the covariance 

between u 2 and u whereas this is the covariance that I am getting between X 2 and the error 

term.  

 

Now, this is you remember our assumption is known as stochastic regressor and because it is 

known as stochastic regressor this term, if I take an expectation of this this is going to be 0 

because these are the deterministic components, these are already fixed. So, if the coefficients 

are already fixed, they cannot have any correlation with the error terms, but this term here 

this is something else we need to consider that carefully.  

 



It is a correlation coefficient between X 2 and X 3. Now, when we have a correlation 

coefficient between X 2 and X 3; let me actually take a new page. 
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And that is let me write down what we got previously. So, beta 2 + beta 3 X 2i – X 2 bar into 

X 3i – X 3 bar and in denominator I had X 2i – X 2 bar square and the third term was 0. Now, 

this was supposed to be the true, we are getting beta we are estimating b 2, so b 2 should be I 

mean b 2 should result in beta 2 if I take expectation. So, from this equation we should get 

the value of b 2 ideally should represent beta 2, but then we are getting additional component 

of beta 3 into this term.  

 

And this is effectively representing the bias. So, this part is a bias in the model when I get this 

whole beta 3 into this term. So, what is the quantity of this bias? So, let us say if I have X 3 is 

equal to let me write down a + let us say h X 2, so then this correlation coefficient between 

the value of h is going to be this because this is the correlation coefficient between X 3 and X 

2 and it is going to be X 2i X 2 bar intop X 3i X 3 bar by square of X 2i X 2 bar whole 

square.  

 

So, essentially this is a correlation coefficient or this is basically the the coefficient of X 2 

when I do the regression between X 2 and X 3. So, this is h and then if I impute the value of h 

into the previous equation it will be beta 2 + beta 3 into h, so this beta 3 into h is going to be 

the bias term. So, we need to understand these bias terms, so the extent of the bias in a 

regression equation from this value.  

 



So, essentially you see there are two components here, one is the beta 3. So, beta 3 is nothing 

but that basically represents the actual strength of relationship between X 3 and our Y term. 

The beta 3 is actually representing that, whereas h is representing the strength of relationship 

between X 2 and X 3. So, we will see in the next lecture how these relationships, the strength 

of relationship and the direction of relationship between X 2 and X 3 and Y actually will help 

us to understand the extent of bias in the regression equation. Thank you. 


