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Prof. Tutan Ahmed
Vinod Gupta School of Management
Indian Institute of Technology - Kharagpur

Module - 8
Lecture - 65
Heteroscedasticity (Contd.)

Hello and welcome back to the lecture on Applied Econometrics, and we have been talking
about heteroscedasticity. Now, in the previous lecture we have introduced the concept and we
have shown how graphically it looks like and what are the situations it may arise. Now, in
this lecture, we are actually going to see, when we have data in our hand, how do we
understand if the dataset really has a problem of heteroscedasticity?
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And for that, we need to understand these two kind of plots that we will talk about. One is
residual versus fitted plot and another is residual versus predictor plot. So, what is residual
versus fitted plot? So, we have already seen that we can actually identify the presence of
heteroscedasticity by plotting Y hat and error; so, the error term that you already have and the
predicted Y, Y hat basically. So, that is what is essentially residual versus fitted.

Fitted is nothing but the fitted Y. Once we actually conduct the regression, perform the
regression, you get the residual versus fitted plot. And residual versus predictor is that, once
you actually conduct the regression, once you already have the residual; basically, you get the



residual after you conduct the regression. So, whatever is left out as a residual, that is what

you actually take and plot it.

And in this case, in the second case, you get the residual and you plot it with the X variable.
So, whatever X variable is your concern, you may think that in your regression equation, it is
like one particular X variable is actually influencing the error term. So, if you plot these two,
then, what you will get is, you get a plot where it will show if there is any relationship. It is

basically, simply looking like a scatter plot.

In a scatter plot, you simply see if you see some sort of association between the 2 variables. It
is as simple as that. So, let us first try to actually run a regression line, a regression equation,
and then we will see how the residual versus fitted is looking like or how the residual versus
predictor plot is looking like.
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01 #x Detection of heteroscedasticity ##

93 import delimited "/Users/Tutan/Desktop/VGSoM/Course Outline/Econometrics/Session V-VI/Bengal NSS.csv", encoding(IS0-8859-1) clear
94 gen exp =,
95  replace exp = age - 5 - genedu

97 gen expsq = .
98 replace expsq = exprexp

100 gen lnwagetotal =,
101 replace lnwagetotal = log(wagetotal)

103 regress wagetotal genedu exp sector sex if prinactstatus > 21 & prinactstatus <= 51
|

105 rvfplot

106 rvfplot, yline(d)

107 rvpplot genedu

109 rvpplot exp

110 rvpplot expsq

m rvpplot sex

12 rvpplot sector

114 gen ideo =,
115 replace ideo = 1/genedu

118 gen ideol =.
119 replace ideol = 1/exp

123 regress wagetotal ideo ideol if prinactstatus > 21 & prinactstatus <= 51
rvpplot ideo

rvpplot ideol

rvfplot

gen invwage =,
replace invwage = 1/wagetotal

n — = - |
So, we will just go back to our data set that we have been using over the time. So, this is

basically National Sample Survey data. And in this National Sample Survey data, | have
already defined all these variables; I am not going to define it again. I will just run the
regression line and let us see if the regression is running fine.
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end of do-file
. do "/var/folders/87/97q8cqxs70q4p5sx2w583p940000gn/T//SD01518.000000"

. regress wagetotal genedu exp sector sex if prinactstatus > 21 & prinactstatus <= 51

Source S5 df S Number of obs = 4,490

+ F(4, 4485) = 695.44

Model | 1.1009e+10 4 2.7521e+09 Prob > F = 0.0000

Residual | 1.7749e+10 4,485 3957420.41 R-squared = 0.3828
T Adj R-squared =  0.3823

Total | 2.8758e+10 4,489 6406242.08 Root MSE = 1989.3

wagetotal Coef.  Std. Err. t Pt [95% Conf. Interval]

genedu 413.9656  8.700003  47.58 0.000 396.9093  431.0219
exp 51.19641 2.379374  21.52 0.600 46.53166  55.86115
sector 401.3902 62,1418 6.46 0.000 279.5617  523.2188
sex -169.525 79.17745  -2.14 0.032  -324.7519 -14.29817
_cons -2533.12 150.2124 -16.86 ©0.000  -2827.611  -2238.63

end of do-file
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The regression is running fine. It is a reasonably good model with R square 0.38. Now, in this
model, | want to see if there is any; what we can see if | do a residual versus fitted plot. So,
this is residual versus fitted plot. The command is very simple in Stata, rvf, residual versus
fitted, r for residual, versus fitted. And if I do rvfplot, let us see what we get here. So, it is
basically giving us like a scatter diagram between your residual and the Y hat.
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And if we do that, this is what we get. And you see that, in this case, what we see is, with the
increasing value of fitted Y, your residual is actually also increasing. So, this is something we
have seen as the usual case of heteroscedasticity, where with the increasing value of X or
increasing value of Y, your error term is also increasing. So, this is one example, what we see
that probably in our data set, we actually have the problem of heteroscedasticity. You can use

this command of yline. So, what you will get is basically, you will get the O line.
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It will give a prominent sort of the O line, where the O line is there. Now, the other plot is

rvpplot. Now, rvpplot is nothing but the residual versus predictor plot. Now, predictor means
basically your X variables. In this case, you note that, if your model has like 3 X variables,
you can actually plot your residual with all these 3 X variables. So, you have to decide, you

have to make a sense of which variable might have some relationship with the error term.

Or you can actually plot all the different possibilities, like all the error terms with the
different predictors. So, let us actually do that. And here, rvp, residual versus predictor plot;
and |1 am assuming that, well, general education might have something to do with the
heteroscedasticity problem. So, let us just try to run it.
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And | see, my idea was correct. So, we actually see that with different levels of general
education; so, these are levels of education, so, like class 4, class 6, class 8 and different ways
NSS actually collects data. And graduation level is probably the highest, the dispersion is
very high. And probably after that, it is post-graduation. So, as you increase the education,

the dispersion is also increasing.

So, that is something we have to; we can kind of say that, well, there is a problem, this
particular X variable might have something to do with the heteroscedasticity problem. You
can also do for other continuous variables or other numerical variable like experience, let us
say.
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If I do with experience, the number of years, so, it is something also making sense. It is of
course, not strictly like diverging. It might have some bell shaped sort of nature. And that is
actually how the experience influences the wage. As your experience increases till a certain
age, maybe 50, 55, 60, you actually keep on earning more; but then, after certain age, even if
your experience is increasing, as per our definition of experience, you may not be earning

that much; your income is actually decreasing.

So, that actually makes sense. So, essentially, it shows that the error term is actually
correlated with the experience, and that is not absolutely a random; so, there is a correlation,
it is not absolutely random. You can also plot with experience square. And let us say if we
plot with the dummy variable; so, here, sex or gender is basically; we have 2 dummy, loop 2

values, 0 and 1, male and female.



And for sector also, this is basically for rural and urban. So, we can expect that for females;
well, so, since they might not have lot of opportunities, so, the dispersion or the observations
are less in number; so, the dispersion might be low.
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And exactly, that is what we see here. So, for males, the dispersion is very high, but whereas
for females, the dispersion is actually low. And you can just pause the video for a moment
and think what will happen if I plot for rural and urban. And if I plot it, we will see that for
urban, because the opportunity has a different type, like the chances of getting into different
occupations are like plenty; so, you are likely to have more dispersion in the urban area.
Whereas, for rural area, since the opportunities are limited, the dispersion is also going to be
low.
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And that is exactly what we see. So, in our data set, 1 is the rural and 2 is the urban. And you
see, the dispersion in urban area is much higher than the dispersion in the rural area. So, this
is the beauty of rvpplot. Now, | can ask a question that, well, we have seen in all the cases,
the heteroscedasticity looks like our case 1.

(Refer Slide Time: 08:46)
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This, our case 1, where we said that usually the error term would show a sort of a diverging
nature. But will it always be the case? And that is what we are going to see now. And | will
claim that it will mostly depend on how you specify your regression equation, how the
functions are, what are the variables. So, that is where the nature of the heteroskedasticity

gets determined.

So, let us say, instead of general education, | create an idiosyncratic variable; | call it ideo
equal to 1 by general education. So, whatever is the value of general education, it will be now
1 by that. And then I create another variable ideol, and that is 1 by experience. And now, if I
run my regression with ideo and ideol; let me actually do that. So, | already have generated.
So, I will not run it again; Stata will give me an error. So, if | run it with ideo and ideol, just
these 2 variables, let us see what we are going to get.
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7 rvfplot, yline(0)
(R Lot sened Model | 3.5365e+09 2 17683409 Prob > F = 0.0000
116 rvpplot exp Residual | 2.5218e+10 4,486 5621481.47 R-squared = 0.1230

11 rvpplot expsq Adj R-squared =  0.1226
112 rvpplot sex 1 ”
13 rvpplot sector Tota 2.8754e+10 4,488 6406967.47 Root MSE = 2371

F(2, 4486) 314.55

115 gen ideo =,

replace ideo = 1/genedu wagetotal Coef.  Std. Err. t o P>[t] [95% Conf. Intervall

e ddestzs, ideo | -2406.475 1014634 -23.72 0.000  -2605.393 -2207.557
eplace:deol. =/ exp ideol | -8517.187 668.9699 -12.73 0.000  -0828.698 -7205.676
_cons | 3134135 65.1799  48.08 0.000 300635  3261.919

regress wagetotal ideo ideol if prifj
rvpplot ideo

rvpplot ideol \ .
rvfplot end of do-file

gen inwwage =,
replace invwage = 1/wagetotal

reqress invwage ideo ideol if prinal

So, my regression has run fine. Now, make a guess; if | plot the rvfplot and if I plot the
rvpplot, where exactly the differences will be actually visible? So, will it be any different if |
do the rvfplot? You can pause for a moment and think about it. Actually, there will be no
difference; because in rvfplot, you are plotting the fitted Y with the error term. So, there
might be a little bit of change in the fitted value, but the nature of the curve is going to remain
same, because the Y, you did not change any functional form of the Y. The Y remains Y’; you
did notdo it log Y or you did notdo 1 by Y.
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So, if I do the rvfplot, we will see, we will get the same residual and fitted value sort of
relationship. But if 1 do rvpplot; because your explanatory variables have changed, the
functional form has changed, you will see the relationship to be a little different.
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So, you see the dispersion is actually higher when your values are actually lower. And it is
actually lower when your values are; and that is totally reasonable, because you have done 1
by general education instead of general education. And similarly, for experience, you will
also see the same thing.
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So, you will have the highest level of dispersion at the value of 0, when you are like 0 or

close to 0, because again, here the new variable ideol is nothing but 1 by experience. So, as
your experience value is increasing, your 1 by experience is actually decreasing. So, it is
essentially showing the same thing. But this is how, just by changing the functional nature,
you can actually have different types of heteroskedasticity plotted.
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107 rvfplot, yline(@)

108 rvpplot genedu

109

116 rvpplot exp

111 rvpplot expsq

1z rvpplot sex

13 rvpplot sector

14

115  gen ideo =,

116 replace ideo = 1/genedu

ur

118

119 gen ideol =,

120 replace ideol = 1/exp

121

12z

123

124 regress wagetotal ideo ideol if prinactstatus > 21 & prinactstatus <= 51
125 rvpplot ideo

126 rvpplot ideol

127 rvfplot

128

123 gen invwage =,

130 replace 'invwage = 1/wagetotal
131

132 regress invwage ideo ideol if prinactstatus > 21 & prinactstatus <= 51

133

134

135 rvfplot

136 rvpplot ideol 0
137 regress wagetotal genedu ideo exp sector sex if prinactstatus » 21 & prinactstatus <= 51 |

138

139 1

14

141 rvpplot ideo LY

142
143 regress wagetotal ideo ideol sector sex if prinactstatus > 21 & prinactstatus <= 51
144

145 #x for 60 Test

146

147 * We take 3/8 of observation

4% »

Now, if | suppose change the Y variable. Now, my Y variable, instead of log wage, | create a
variable inverse of wage. My dependent variable is wagetotal, so, my new variable is going
to be invwage, which is 1 by wagetotal. So, if | run the regression here with invwage as the Y
variable, so, | will get the result; invwage is not found.
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end of do-file
. do "/var/folders/87/97q8cqxs70q4p5sx2w583p940000gn/T//SD81518.000000"

. regress invwage ideo ideol if prinactstatus > 21 & prinactstatus <= 51
variable invwage not found

r(111);

end of do-file

r(111);
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So, that means, I need to define it. So, let me define it. So, essentially, | have to run it. Now,
let us say it should be working fine.
(Refer Slide Time: 13:09)



. regress invwage ideo ideol if prinactstatus > 21 & prinactstatus <= 51

Source SS daf MS Number of obs = 4,258

—  F(2, 4255) = 197.26

Model .000946863 2 .000473432 Prob > F = 0.0000
Residual .010212135 4,255 2.4000e-06 R-squared = 0.0849
Adj R-squared =  0.0844

Total .011158998 4,257 2.6213e-06 Root MSE = .00155
invwage Coef.  Std. Err. t o Pt [95% Conf. Interval]

ideo .0012808 .0000695  18.44 0.000 .0011446 .001417
ideol | .0048312 .0004471  10.81 6.000 .0039547  .0057078
_cons .0007106  .0000434  16.37 0.000 .0006255  .0007957
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So, now | got the regression with my dependent variable as invwage. So, now | have to see
what happens to the rvfplot. So, what will happen to the rvfplot? Now, | have changed the Y
variable. So, essentially, we will see something similar to what you have seen previously.
Here, in this case, since we have changed your Y variable, your rvfplot is going to change,
because your Y isnow 1 by Y.
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So, essentially, you see that. So, as your fitted values are lower, your dispersion in the error

term is much higher, because now your Y variable is nothing but 1 by previous Y variable.
So, that is why your dispersion is much higher when this new Y variable has a lower value.
So, this is how by just by changing the functional form, you can actually get different

representation of the heteroskedasticity. Now, you may also want to actually see what



happens with the rvpplot here. So, of course, your rvpplot is not going to change, because the
X variable has remained same.
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Oh, I have actually kept ideol.
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107 rvfﬁla(, yline()
108 rvpplot genedu

110 rvpplot exp

111 rvpplot expsq

12 rvpplot sex

13 rupplot sector

115 gen ideo =,
116 replace ideo = 1/genedu

119 gen ideol =,
120 replace ideol = 1/exp

124 regress wagetotal ideo ideol if prinactstatus > 21 & prinactstatus <= 51
125 rvpplot ideo

126 rvpplot ideol

127 rvfplot

129 gen invwage =,
130 replace inwwage = 1/wagetotal

132 regress invwage ideo ideol if primactstatus > 21 & prinactstatus <= 51
133 regress invwage genedu exp if prinactstatus > 21 & prinactstatus <= 51

35| 1
136 rvfplot

137 rvpplot ideol
138 regress wagetotal genedu ideo exp sector sex if prinactstatus > 21 & prinactstatus <= 51

142 rvpplot ideo HY -
144 regress wagetotal ideo ideol sector sex if prinactstatus > 21 & prinactstatus <= 51

146 #x for G Test %

b & i
Instead, if I would have kept, say X genedu and experience; so, essentially, without changing

the form of the X variable; and then, if I do rvpplot, then I will see;
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It will remain, it did not change; the residual now has a, again diverging nature of;
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So, essentially, we will see that the residuals, it will show some changes because the residuals
have changed, because the model is different; but it will not be like the converging error term
that we have just seen previously.
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. do "/var/folders/87/97q8cqxs70q4p5sx2w583p940000gn/T//SD01518.000000"

. rvfplot

end of do-file
. do "/var/folders/87/97q8cqxs70q4pSsx2w583p940000gn/T//SD01518.000000"

. rvpplot genedu

end of do-file
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So, that is how we need to understand if | do this residual versus fitted, residual versus
predictor plot, and if we use different functional forms. So, with this, we will end the lecture
here. And in the next lecture, we are going to talk about why this heteroskedasticity is a
problem. So, we see what is a heteroskedasticity; we have seen how to understand
heteroskedasticity; but in the next lecture, we are going to actually talk about why it is a

problem. Thank you.



