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Hello and welcome back to the lecture on Applied Econometrics. We have been talking about 

the problem of multicollinearity. Now, we explained the concept of multicollinearity. We 

have also given you a proof why perfect collinearity is a problem. Now, we will try to see 

why exactly if I have multicollinearity; I understand perfect collinearity is a problem; but if I 

have like imperfect collinearity, it may be high multicollinearity, low multicollinearity; why 

is that going to be a problem?  

 

If suppose, if my X variables are related to some extent, how is that going to create a problem 

in my regression equation? And that is what we are going to see. The major problem and that 

you need to remember is that, in case of multicollinearity, if the X variables are related, what 

happens is that, the standard error term corresponding to each of these beta coefficients that 

we are estimating is going to be high.  

 

I repeat; the major problem that occurs due to the multicollinearity is that the standard error 

term associated with each of the beta coefficients in the regression equation are going to be 

high, because, if there is a high multicollinearity problem. So, depending on the extent of 

multicollinearity, we will have different levels of standard error. And a high multicollinearity 

would lead to a high standard error.  

 

And we will see what happens if I have high standard error. So, let me first explain the 

standard error for the different coefficients in a regression equation. And we will use the 

result that we previously derived when we derived the relationship between b 2 and beta 2. 

So, the sample regression coefficient and the population regression coefficient. So, I will not 

actually derive it. 
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So, you just look at your previous notes. So, where we derived it as b 2 is equal to beta 2 plus 

X i minus X bar into u i minus u bar by summation of X i minus X bar whole square. So, we 

said that the value of b 2 is actually a sum total of a sort of non-stochastic component and a 

stochastic component, because of the involvement of the error term here. And that is what 

actually gives a distribution for the b 2 that we determine.  

 

Now, if I further simplify; so, I am not going to show you the full proof. You can again find 

this proof in Christopher Dougherty's textbook, chapter 3. It is going to be X i minus X bar 

into u i by summation X i minus X bar whole square. Now, if I actually use this relationship, 

I can actually write, let us say, simplify it as beta 2 plus summation of a i u i; this one. And 

now, if I use this value of b 2 here, and if I actually try to get a sigma square value for b 2, 

what I will do is, I will actually do something like this: expectation of b 2 minus of E of b 2 

and a whole square of that. So, let us say I use a third bracket here. So, this is going to be the 

value of my sigma square.  
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And if I simplify it, what I will get is that; I am not going to show the steps again. So, what I 

will get is sigma beta 2 square is equal to, it is going to be sigma u square by X i minus X bar 

whole square. And if I have a term; so, this is where I have like simple OLS, I have only 1 

variable X; but if suppose I have 2 variables, X 2 and X 3; let us say I have only 1 

explanatory variable; but if I have say 2 explanatory variables, so, what will happen is that, 

because there is a correlation between these 2 explanatory variable, so, the equation is going 

to be, in that case is, sigma u square by summation of X.  

 

So, here I have, my only variable is; let us say I am trying to get the coefficient for X 2 

variable. So, it is going to be X 2 minus X 2 bar all over i; let us say I put an i here also, over 

all i; square into 1 by 1 minus r X 2 X 3 square; so, where r X 2 X 3 is nothing but the 

correlation coefficient between these 2 variables, X 2 and X 3. Similarly, if I have to write, 

say the sigma square value for beta 3, so, standard error.  

 

These are basically, these are nothing but the standard error for beta 2. So, this is the standard 

of a beta 2, and it has this formula. And similarly, I can write standard error for beta 3, which 

is the coefficient for X 3. And that is going to be beta 3 square. It is going to be, so, variance 

of the error term and summation of X 3i. Now, variable I am concerned is X 3 square into; 

the other term remains same; 1 by 1 minus r X 2 X 3 square.  

 

So, essentially, you see that we have; basically, what you are doing? You are multiplying a 

term in case of multiple explanatory variable. So, here I have 2 explanatory variables. So, 

what I am doing is that, I am multiplying the term 1 by 1 minus r X 2 X 3 square. And now, 



let us try to understand. So, this is basically the form of standard error. And again, if you 

want to see the proof, I would recommend you consult the Christopher Dougherty's textbook, 

chapter 3.  

 

Now, let us try to understand what is happening here. Suppose the correlation between X 2 

and X 3 is very high; so, R square value is very high. So, if that happens, what will happen? 

So, if the R square value is very high, so, 1 minus R square value is going to be very low. 

And if 1 minus R square value is going to be very low, what will happen is the standard error 

of beta sigma, beta 2 or beta 3, whichever you take, that value is going to be very high. And 

if the standard error of beta is going to be very high; so, I normally; if you remember a 

regression, how a regression looks like; so, you have; 
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I am taking a previous regression that we have run. So, this is a coefficient, this is a standard 

error and this is your t value. So, you get your; so, let me actually write down the implication.  
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So, basically, my t distribution, t value is nothing but my beta 2 by my standard error of beta 

2. So, that is how we define it. Now, if my standard of beta 2 is very high, what we are going 

to have is very low t value. And if I have very low t value, what will happen is that, this t 

value that we estimate is going to be somewhere near here; t value, let us say t estimated. 

And it is going to be, if I have like a higher standard error, it is going to be somewhere near 

to this mean.  

 

And that will mean that my t critical, it is going to be left with a t critical, which would mean 

that my t critical, so, basically, my coefficient is going to be; if that is the case, my beta 

coefficient, the corresponding b 2 is going to be insignificant. So, the problem here is that, if I 

have high standard error, so, even if my B 2 is actually important, it is actually explaining the 

regression equation.  

 

Just because of the fact that I have a high standard error, I will actually see a very low b 2 

value; it is going to be insignificant, it is going to give me an insignificant beta; not low 

value, but low t value. And because of the low t value, I am going to get an insignificant beta 

2 or b 2. So, low t value means high P value. So, we will see an insignificant value for the 

particular beta coefficients. 
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If I actually run this regression equation; so, let me actually go back and run this regression 

equation. Here I am just going to include this ln output, ln labor, ln capital, labor and capital. 

So, essentially, labor, capital, and the logarithmic 2 variables for log capital, log labor; these 

are my explanatory variables.  
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If I run this, I will see that for labor and capital, the t values are pretty low, like 0.6, 0.67, and 

the P values are quite high. We know that for low t value, we will have a corresponding high 

P value. Now, so, these 2 variables are going to be insignificant. And the reason here is that, 

there is a high multicollinearity problem. So, because I have labor, capital and at the same 

time, I have log of labor and log of capital.  

 



So, this is something that is going to give me an insignificant value for beta. What happens is 

that, because my model is well fitted, so, because the variables are actually explaining the 

error, so, my explained sum of error is actually going to be pretty high. And if that is the case, 

then it is actually explaining most of the variations in the total sum of square. So, it is going 

to give me a very high R square.  

 

So, essentially, what will happen is, if the model is actually, the variables are highly related, 

but again that they are actually explaining the Y variable, even if the R square value is high. 

So, they are actually going to give me a high R square value, whereas, I will have the 

coefficients insignificant. So, that is basically something that we need to remember in case of 

multicollinearity.  

 

So, this is something, one symptom that we will see. A variable that I feel should be actually 

explaining the Y variable, that is actually insignificant; but at the same time, I am seeing a 

high R square value.  
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Now, let me tell you couple of more symptoms when you actually have this multicollinearity 

problem. So, what will happen if you add or maybe delete one variable, delete one, say X 

variables? What will happen is, if they are highly correlated, so, what will happen is that, this 

term here, this r X Y, this correlation coefficient term here, this is going to change, because 

they are actually dependent on which other variables are present there.  

 



And if there is a high correlation coefficient among the variables, so, this value is going to be 

high. And the moment you change one variable, it is going to change. And the moment it is 

going to change, my standard error is going to change. And if my standard error is going to 

change, my t value is also going to change drastically. And it means, the moment you include 

a variable or exclude a X variable, it will automatically change the coefficients, the level of 

significance or the significance of the coefficients, the explanatory variables.  

 

So, that is another, basically, a case where if you add or delete variable, you will see is highly 

sensitive, because it will drastically change the values or the sign or the significance of other 

explanatory variables. And it can also happen if you basically bring in more data. So, if you 

bring in more data or if you reduce some data, so, it will also be very sensitive to any sort of 

change.  

 

So, if you see this kind of sensitivity existing in your model, you can actually presume that 

there might be a problem of multicollinearity. So, these are some of the symptoms for 

multicollinearity. And we will just conclude this lecture by saying that, usually, we have used 

this term, 1 by 1 minus r square X 2 X 3.   
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So, usually, this term is also referred as VIF, variance inflation; or some books use inflating, 

like Gujarati use inflating, whereas Dougherty would use inflation; inflating factor. So, 

mathematically we write it 1 by 1 minus r X 2 X 3 square. And we will see the importance of 

this VIF when we talk about multicollinearity. So, with this, we end this particular lecture 

where we have explained the problem of high standard error, which is essentially the crucial 



problem when we deal with multicollinearity. And with this, we end the lecture. In the next 

lecture, we are going to see some other problems and how we are going to remedy the 

problems of multicollinearity. 


