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Hello and welcome back to the lecture on multicollinearity. So, in the previous lecture, we 

explained the concept of multicollinearity. And we said, in case of perfect collinearity, there 

are some problem, there is an error that occurs, and often that the software cannot run 

regression; but there are some other software's; they can actually omit some variables and run 

the regression.  

 

Now, a question may appear that why exactly, like how can I mathematically understand this 

problem is occurring. So, we have said, in case of, like the different examples where the 

perfect linear relationship is a problem, because the coefficients are varying simultaneously. 

Now, if I want to try to explain that in terms of the beta coefficient in a generic term, so, we 

will see why this problem is occurring.  

 

Let me first write down the expression of a beta coefficient when I have more than 1 

explanatory variable, and let us take the case of 2 explanatory variables. So, I will write it 

down.  
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So, beta 2 is going to be in this case summation where; let me actually write down the 

equation first. So, Y is equal to, so, let us say, the same notation that we are using, beta 1 plus 

beta 2 X 2 plus beta 3 X 3 and some error term. So, this is my equation. Now, in this 

equation, if I write it down, the value of beta coefficient in terms of X 2 and X 3; so, it will be 

like this.  

 

So, basically, you get this value by solving this, the same list square method you have to 

adopt. And if you do that, X 2i minus X 2 bar into Y i minus Y bar. So, I have not memorised 

it and I do not recommend you to memorise it, neither you have to actually solve this; you do 

not have to do it on your own; it is just for the purpose of illustration that if I have something 

like this; square; and then, I will have just the same way, X 3i minus X 3 bar into; Y bar; into 

X 2i minus; sorry about this small 4 and set with square.  

 

It is just a symmetric way of writing the first term and the second term as symmetric. Just I 

have changed 2 and 3. And the denominator is going to be X 2i minus X 2 bar square X 3i 

minus X 3 bar square minus; it is a bit of a big equation, but anytime you are running, like 

you are going beyond the simple OLS where you are incorporating more than 1 explanatory 

variable, it is going to look like a bit messy, but the purpose of writing this equation is not for 

you to remember this equation, but only for you to understand why the perfect collinearity 

problem is occurring.  

 

And it is good to have some idea about how it looks like, the final value of beta 2 when I 

have like more than 1 explanatory variable. See, if I have 3, it will be even more messy. So, 

X 3i minus X 3 bar. And then, there will be a close bracket, and then there will be a whole 

square. So, it is a pretty big term. Now, the reason; so, let me actually number the equations. 

So, let us say this is my equation 1, and this is me equation 2.  

 

Now, for b 2, I got these values. And if I have to get the b 3, I just have to simply change the 

values of X 2 with X 3. Now, let us have the case where I have my X 2 and X 3 are perfectly 

linearly related. Let us say this is equal to mu X 2; this is an equation 3. Now, if I substitute 

this value X 3 with X 2, putting 3 in the equation 2, what I will find? I will find this both term 

in the numerator is going to be 0, as well as in the denominator, that is going to be 0.  

 



And it is going to be undefined. And this proof, you can actually find from the Christopher 

Dougherty's textbook. It is a good idea to; in the chapter 3, in the page number around 160 to 

170, it talks about the problem of multicollinearity. So, there you can see, the proof is given. 

So, you can actually take a look why the value of beta 2 becomes undefined here. So, that is 

basically the proof of why perfect collinearity is a problem for simple OLS, for the OLS 

regression. With this, we will end this lecture. 


