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Hello and welcome back to the lecture on Applied Econometrics. So, we are talking about 

multicollinearity, and we have explained pretty much different aspects of molecularity. Now, 

in this lecture, we are actually going to talk about R square and the correlation coefficient in 

the context of multicollinearity. Now, we have seen previously that our R square value is 

nothing but my r square value in case of simple OLS.  
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We have actually proved that this is what we will get.  
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And let me actually do a little bit of demonstration here. So, let us say this is my regression 

equation, I will just take just a simple one explanatory variable, let us say it is ln labor, and I 

run a regression.  
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And what I see is that, the R square value is going to be 0.9426. Now I want to see the 

correlation coefficient among these two. So, what I will do? I will simply write corr, 

command, and run it.  
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And we see, it is going to be 0.97. So, it is 0.97, the small r, the correlation coefficient. And 

the R square value is 0.94. And why they are not the same? Because here, in the second table, 

I am only getting the R value, not the R square value.  
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If I actually do 9706; so, if I just simply take a square of that; so, what I am going to get? I 

am going to get the value of 0.942. I do not know if it is visible; but let me just increase the 

font. So, you can see, it is 0.942. So, that is basically the R square value. So, this is basically 

the R square, 0.942. Now, so, that is the case with the simple OLS. We have this equation, 

capital R square is equal to small r square.  

 

But what happens when we have like a multiple regression? Because, then, the issue is that 

my R square, the correlation coefficient among the X and Y variables; so, like, if I take 



different correlation coefficient for different explanatory variable, they might actually 

overlap. So, we will see what actually happens in case of this multiple regression. So, let us 

say the variability of Y is explained by this circle.  

 

Let me actually draw a big circle here; let us say this is the variability of Y. Now, what was 

happening previously? So, all the variability of Y, whatever variability we are getting, 

previously, when I was taking correlation coefficient, the R square was exactly the same, 

because the variability between X and Y was again explained by R square. So, they are 

explaining basically the same thing.  

 

Now, and your R square is explaining the explained sum of square. So, it was essentially 

explaining the same thing. Now, the problem with multiple regression is that my different X 

variables, they have some amount of correlation among themselves. They have some amount 

of correlation among themselves. And usually what happens is that, if you run, these different 

X variables will actually explain the different extent of the Y.  

 

And they will also explain each other. So, there will be multiple overlaps. And that is why 

you really cannot say in case of multiple regression that; ideally I could have said that R 

square is equal to essentially summation of all these small r squares, but that does not happen 

because the overlaps. But if for an ideal condition, let us say, in an ideal condition where all 

the r X i, X j is equal to 0; if the correlation coefficient among all these explanatory;  
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Will mean that there is no overlap. So, if X 1 is explaining this part, X 2 is explaining this 

part, and let us say X 3 is explaining this part; X 2, X 3 and let us say X 4; they are 

explaining these 3 parts. So, if I get something like this, then, in that ideal condition, my R 

square is going to be summation of all the small r square. So, that can happen, but only if this 

ideal condition satisfies, but that is very unlikely because the X variables will always have 

some amount of relationships among themselves.  

 

Now, because of this overlap problem, we have derived some other types of correlation 

coefficient. We are just going to see that. So, one we have learnt is that, what we normally 

know is a pairwise correlation coefficient that we have been doing so far. 
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Now, we will learn something called partial correlation coefficient. And there is something 

called semi-partial correlation coefficient. We will try to understand these 3 terms, and how 

they are related. Now, we will try to understand that how each of these terms are related. So, 

before that, let me actually show you in Stata, how this pairwise correlation coefficient 

matters. So, we already have done pairwise correlation coefficient previously, where we run 

the code corr. So, let me go back to the table here.  
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So, here we see that in case of, when we talk about pairwise correlation coefficient, we see 

that labor, log of labor is actually explaining, like it is 0.97; it is very high correlation 

coefficient. So, we can say that okay, probably log of labor is actually explaining all the 

variability in the output. And the same time, if you take log of capital, it is actually 

explaining 0.97 again. So, it is like explaining everything, all the variability in the model.  

 

Now, why it is happening? It is happening because; when you take one particular variable, 

so, what will happen? It will actually capture the variations of other variables as well. So, 

when you take the pairwise correlation coefficient, the case one, it will capture the variations 

due to other variables. So, we gave an example at the beginning that kid's education is 

actually some function of father's education and father's income.  

 

So, that is what we said. Now, let us say these are the 2 variables which are very prominently 

explaining kid's education. Now, if I actually drop, let us say father's income or let us say 

father's education, whichever you want to drop; so, the other variable will actually; the 

variations that happen due to the other explanatory variables. The father's income will capture 

the variations that is happening due to father's education. So, that is where it will actually 

inflate the influence, the variations in kid's education. 
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And if, let us say, this is how much father's income. Father's income is actually explaining. 

And this is, say father's education, this part. And the overall variability is kid's education. The 

moment you exclude father's education; so, the moment in your model you do not have 

father's education let us say; so, then, your model will, the variability like the father's income 

will explain something like this much.  

 

So, almost like everything will be explained by father's income. Father's income will show 

the impact of other variables, because the other variables are not involved, are not included, 

so, all the variability of the other variables which are related to father's income, they will be 

reflected by father's income; because the different other variables which I am omitting, they 

are also related to father's income.  

 

So, because now I do not include those explanatory variables in the regression equation, so, 

father's income is going to explain most of the variations. So, that is the problem with 

pairwise correlation coefficient. And that is why we have derived the term or derived the 

concept of partial correlation coefficient. And let me actually explain what I mean by partial 

correlation coefficient.  
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Now, I will use different colours here. So, let us say this is again the variability in Y. So, this 

is how we will try to understand graphically. It makes a lot of sense if we do it graphically. 

Now, if this is father's, the Y variable, variability of Y variable, and let us say this is the 

variation that is happening due to X 2, and this is the variation which is happening due to X 

3. Now, what pairwise correlation coefficient does is that, it ensures that the variability due to 

other X variables are actually kept constant.  

 

So, the variability due to other X variables are actually kept constant. Partial correlation 

coefficient could be expressed in terms of r y X 3, keeping my X 2 constant. So, you can 

have like many other X variables. So, here you can have X 4 or you can have something like 

X 5. Here what you do is, in whatever number of variables you have, so, it is going to be say 

r; I just want to; I am interested in X 2, let us say; r Y X 2 keeping X 3, X 4, X 5 constant.  

 

So, this is how we actually express the concept of pairwise correlation coefficient. So, that is 

how basically we should see how we should understand the pairwise correlation coefficient. 

Now, mathematical term for pairwise correlation coefficient is basically r y X 1 given X 2, is 

going to be r Y X 1 - r X 2 y or y X 2, whichever you want to write, into r X 1 X 2 by square 

root of 1 by 1 - r Y X 1 square into r 1 - r Y X 2 square.  

 

Essentially, you do not have to remember this formula. Essentially, it is just to give you an 

idea that the partial correlation coefficient, when you want to keep the impact of some X 

variable constant, so, you have to basically do this, you have to basically incorporate this 



correlation coefficient values here. So, this is about the partial correlation coefficient. And 

what is the semi-partial correlation coefficient?  

 

The semi-partial correlation coefficient is relatively simple. So, essentially, if I want to look 

at the partial correlation coefficient here; so, partial correlation coefficient for X 5 is going to 

be this much. So, it really does not take into account the correlation coefficient or the 

influence of other variables. So, everything else is constant. So, I will just get the impact of X 

5 on Y.  

 

Or if I want to take the partial correlation coefficient between X 4 and Y, so, I will get this 

much. So, the entire effect by X 4 is actually captured by partial correlation coefficient, 

because I am keeping the other terms constant. So, it is not inflating the importance of the X 

X 4 variables here. Now, the semi-partial correlation coefficient on the other hand is 

basically, shows the independent contribution.  

 

So, what do we mean by that is essentially; let us say, I want to understand the impact of X 2 

on Y, and I want to see the semi-partial correlation coefficient. So, what it will do? It will 

basically show this area where there is no overlap. So, if you want to understand the 

independent importance of a particular variable of, so far as the determining the dependent 

variable is concerned, you should look at the semi-partial correlation coefficient. And here, 

for the semi-partial correlation coefficient, we have, this is the area under the X 2.  
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And for X 3, this is going to be the area; so, where they are essentially independent; there is 

no overlap existing. So, naturally, whenever you get a semi-partial correlation coefficient, 

what you will get is, it is less than the partial correlation coefficient value. So, let us actually 

run our small command. And it is like partial correlation coefficient, we write pcorr.  
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So, now I get the partial correlation coefficient; I get semi-partial correlation coefficient; I get 

the square values, and so forth. So, here you see, the ln capital value is becoming 0.49, 

whereas ln labor is becoming 0.49. So, earlier, if you remember, we had, it is almost; where 

is that? Previously we have done that; almost 0.97 each, because they are actually explaining 

the variability due to other factors.  

 

And here, I have like a very clean representation of the variability by, due to ln capital and ln 

labor; whereas, for only labor and only capital, they are very low. So, we got that. And semi-

partial correlation coefficient, as we saw, it is going to be the smaller segment, that part 

where there is no overlap. So, this part is going to be the semi-partial correlation coefficient 

for each of this term. So, ln capital, ln labor.  

 

So, usually, if you sum up the square of the partial correlation coefficient, it will be higher 

and it will be closer to R square, as opposed to if you just square and sum the semi-partial 

correlation coefficient. So, that is basically the idea of these different correlation coefficients. 

And when you try to understand the multicollinearity, it is advisable.  
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So, previously, we have said that, all these 4 different ways to understand multicollinearity. If 

there is present or not. So, I will add one more here. I will use the same colour as before. So, 

I will add one more here. And that fifth is, instead of running just simply pairwise correlation 

coefficient like we proposed in 3, we can propose a case of 5, where run partial and semi-

partial correlation coefficient.  

 

So, now we have seen all the 3 different important terms that we deal with a regression 

equation, the R square, the standard error and the beta coefficient. So, we have seen how we 

should look at all these 3 terms in case of multicollinearity problem. Now, with this, we will 

end this lecture. So far, we have talked about all these different ways to understand 

multicollinearity, and we have just given small data set to understand how the 

multicollinearity looks like.  

 

So, finally, what we will do is, we will run a standard regression equation with multiple, 

different variables, and we will see all these problems, how they look like and how we are 

going to address them. So, thank you very much. With this, we will end this lecture here. 


