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Multicollinearity

Hello and welcome back to the lecture on Applied Econometrics. So, today we are going to
cover an important topic called multicollinearity. Now, when we spoke about the Gauss-
Markov assumptions regarding regressions, so we talked about different properties that we
need to satisfy. So, multicollinearity is one among them. So, interesting thing about
multicollinearity is that it is not something that we have to ensure that there is no
multicollinearity, because there will always be some multicollinearity in a regression

equation, but we have to ensure that the degree of multicollinearity is within some limit.

So, we will explain what is multicollinearity and why we are more bothered about the degree
as such for multicollinearity. So, multicollinearity, it arises because of the fact that we have
many explanatory variables which might themselves be related, and usually that is the case.
So, when we talk about any dependent variable, let us say we talk about kid’s education. So,
when we talk about kid’s education, there are different explanatory variables; for example,
father's education, father's income, and there are so many other variables and which are
related.

So, for a kid's education, it is very important that; usually we will see that the father's
education and kid's education are related, because a father who is educated, he knows the
value of education, and he will want his kid to also be educated. So, they are correlated; but
at the same time, the father needs to have enough income to send his kid to a good school, for

example.

So, all these variables are important, but at the same time, what happens is that father's
education and father's income is also related, because father's income was basically a
dependent variable of father's education. So, this way, all these variables are related. All these
explanatory variables are related amongst themselves, and at the same time, they are all

explaining the new dependent variable which is the kid’s education.



So, you take any other example and you will see the complex nature of this reality. So,
everywhere, you will see that all these different explanatory variables which appears to be
very, like directly related to the dependent variable; we will see that the independent variable
themselves are related.

And we will do an example where we will see the number of hours worked by female in the
labor force, how they are related to different variables like husband's education, husband's
wage, husband's age, the female's parents' education, female's parents' income, the number of
kids that female has, the number of kids who are below certain age group, number of kids

above certain age group, the tax the family pays and so forth.

And again, if we look at the independent variables, we will see that the independent variable
themselves are very highly related. For example, husband's education and husband's income,
or husband's income and husband's wage, father's education and mother's education. And so,
all the variables that we will see as the X variable, we will see that they are quite clearly, they
are also related.

So, that is why, because the reality is some complex, we will see all the explanatory
variables, they are actually themselves are related. So, multicollinearity is essentially a
measurement of how much this sort of relationships are there among the independent
variables, among the X variables. So, that is what we see in multicollinearity. And if we have

multicollinearity, we never say that we are violating Gauss-Markov assumption.

We have a problem when we have perfect collinearity, or we have a problem when we have
very high multicollinearity. And we are going to see, what do we mean by perfect
collinearity? What do we mean by imperfect collinearity? What do we mean by high or low
multicollinearity? So, let us give a couple of examples. So, first let me explain what do |
mean by a perfect and imperfect collinearity. So, when I am dealing with perfect collinearity,
so, perfect collinearity will normally come from equation like, letussay X 1 + 3 X 2 =5.
(Refer Slide Time: 04:32)
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So, they are like, it is a deterministic relationship. There is no stochastic component here. So,
every time you basically get, if you want to express X 2 in terms of X 1, it is going to be 5
minus X 1 by 3. So, all the time, the relationship is going to be like that. So, you do not have
any component of randomness. So, you always get for a certain value of X 1, you always get

a certain value of X 2. So, this is a case of perfect collinearity.

Whereas, in case of imperfect collinearity, how we write it as, X 1 + 3 X 2 plus some
stochastic component, let us say some error term u is equal to 5. So, in this case, you always
have certain error term that will stop the equation from being a deterministic equation, and
that is why you can run a regression equation. And when you have this sort of an equation,
you can actually get a regression equation; we can also see the case of; this is a case of

imperfect collinearity.

And only in case of imperfect collinearity, we have this problem of multicollinearity that we
see; imperfect collinearity. So, we will do some examples to see what is perfect collinearity,
what is imperfect collinearity, where multicollinearity may arise; and some of the cues that
we get at this stage, we will use when we actually elaborate different examples of
multicollinearity. So, let me give you an example.

(Refer Slide Time: 06:27)



So, when we dealt with the concept of dummy variable, you remember; let us say, if there is a
dummy variable, let us say gender, and you have 2 categories, male and female. Now, we
always used one particular category as the reference or base category or base dummy. For
example, if 1 use female as a reference or base category, so, we used the male in the

regression equation, and we saw how male is changing with respect to the female.

So, that is how we explain a dummy variable. Now, if I include both male and female in the
regression equation, so, what we will see is that, your regression equation will actually stop
because there is a problem of collinearity; it will give you an error message that there is a
problem of collinearity, perfect collinearity. Now, perfect collinearity here in the case of
dummy variable, comes from the fact that; so, like, if | define this dummy as D, the moment
you add all the different values of dummies; so, let us say D i over all i; so, it will always
give me a value of 1, because if someone is male, then he is not female, or if someone is

female, she is not male.

And if | represent this dummy with respect, using this values 0 1; let us say female is the base
dummy, so | put 0. So, if someone is female, if female is 0, then the person has to be male;
so, it is 1. And if a person is male, then that person has to be female; if not male, then the
person has to be female. And if the person is not male, that person has to be female, and so
forth. So, if | add these values, it will always give me a value of 1, because 0 plus 1 is always
1.



Now, the problem that we have in case of dummy variable we have seen is that, this
summation of dummy which gives me a coefficient of 1 is actually perfectly linearly related

with the coefficient of the intercept terms. So, intercept term always gives you a certain

value, but that intercept term could also be like, represented as 1 into certain, the coefficients.
(Refer Slide Time: 08:38)
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So, the value of the variable is 1 and it has certain coefficient value. So, now, because of that,
so, in case of dummy, it has 1 as a variable value, the X value, and it has a coefficient value.
Now, because both of these variables; so, dummy variable and intercept term, both of these
has this 1 as the value of the variable; so, it will always give rise to a problem of a perfect

collinearity.

So, because 2 variables, they are having the same value; so, they are varying in the same
manner; so, that is why they have a problem of perfect collinearity. So, similarly, if | have;
the example we have written;

(Refer Slide Time: 09:31)
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So, if luse X 1 +3X 2 =5. And if | have in my regression, let us say regression equation
where | write Y is equal to beta 1 plus beta 2 X 1 plus beta 3 X 2; and | can add a u, error
term. If | run this regression equation, so, what will happen is that, because X 1 and X 2, if
they are perfectly linearly related, so, my regression equation actually dropped one of these

variables.

So, either it will say error message that it cannot run the regression, because X 1 and X 2 are
perfectly linearly related or it will drop one of these variables. If you are using a software like
Stata, so, it will drop one of these variables; or for that matter, R and other softwares also,
they are smart enough to do that. So, it will drop one of these variables and it will actually
run the regression for you; but there will be a drop of 1 variables, and that is because of the

problem of perfect collinearity; but as such, there is no problem.

If you have some amount of stochastic component involved, then there is no perfect
collinearity and you will have a good regression equation. So, then the question of degree of
multicollinearity will come if you have the stochastic regression equation. Here we have to
kind of see that there are different type; we will do couple of examples. And one thing we
have to remember that, when we do not have; I mean, there could be relationship, basically a

very defined relationship, but the relationship is not linear.

So, | am talking about collinearity. So, if the relationship is not linear, then you do not have;
you still have the problem multicollinearity, but you do not have the problem of perfect

collinearity. So, let us say, if | represent, my X 2 is equal to log of X 1. So, here the



relationship is pretty defined, but they are not linear. So, the moment it is not linear, you do
not have perfect collinearity problem, you still have the collinearity problem, the

multicollinearity problem, but it is not the perfect collinearity problem.

Or you can write maybe X 3 is equal to say X 2 square or so forth. So, then again, it is not a
linear relationship; so, here, again, you will not have perfect collinearity problem, but you
will have multicollinearity; you will have imperfect collinearity. So, that is what we are going
to see in next few examples. So, let us do some examples. So, let me actually create a small
quiz for you, and we will try to answer the quiz.

(Refer Slide Time: 12:18)
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We will do a hands on, and then we will get back to this and we will try to answer the quiz.
So, my first question is that, suppose | have my X 2, let us say; X 2 = X 1 + 2; my equation
number 1. Then I have let us say my X 3 =2 X 2; equation number 2. Then I introduce some
random variable X 4. And let us say my X 5 =X 4 + X 5. Then | have my X 6. My X 6 is, let

us say | will define X 6 as log of X 5. So, these are like my 4 equations.

Now, my question to you is, if | run a regression, and the regression equation actually takes
care of the collinearity, and it actually drops variable if there is a collinearity problem, so,
how many variables will be dropped in each of this equation if my regression equation is of
this form? Let us say | have 2 other variables, X 7 and X 8. And for each of this equation, my
regression equation is like that: Y is equal to beta 1 plus beta 2 X 1 plus beta 3 X 2 plus X 7
plus X 8.



So, this is 1 equation, let us say. Then you have, you run another regression equation, Y is
equal to beta 1 plus beta 2 X 3, and then beta 3 X 2; | am just taking the variable from all
these above equations; and then | add X 7, X 8. Let us say | have to introduce some other
coefficient; so, beta 4 beta 5. And we can also add some error term here; so, here, again, |

will add beta 4 beta 5 X 8 plus some error term. | minimise it.

Let me write couple of more equations. So, Y is equal to, in this case is going to be beta 1
plus beta 2 X 5, beta 3 X 4, and beta 4 X 5 X 3. | use the X 3 from here to here; so, X 3. So,
that is going to be beta 4 X 3. The equations might look a little messy, but it is actually very
simple thing what | am doing. What | am just trying to do is, I am basically introducing; in
any regression equation, I am having these 2 terms, and | am incorporating all the variables
that I am writing in the different equations.

So, for every different regression equation, | am using different variables from the different
equations. In this regression equation, | also have to add; actually, | have not added X 7 and
X 4, but it does not matter really; let us say we omit X 7 and X 8. And then, the last equation,
let us say | write Y is equal to; have to minimise the size further; I hope it is still visible; Y is

equal to beta 1 plus beta 2 X 6 plus beta 3 X 7 or beta 4 X 7 beta 5 X 8 plus some error term.

Now, I have all these equations. | have written very long equations. Now, let us say | also
name them; this is 5, this is 6, this is 7 and this is 8. Now, | will let you guess. If | run
regression for all these different equations, so, how many variables will be dropped? So, in
the first equation; | will actually try to brainstorm here, and then we will do a hands on to
show you what exactly is happening. So, let us look at equation 5.

And in equation 5, | have X 2 and X 1 are there; they have a perfect linear relationship; so,
they are perfectly collinear. And because of that, definitely 1 variable has to be dropped. So,
either X 1 or X 2 will be dropped, and the regression will run. So, there will be 1 variable
drop in this case. Similarly, for equation 2, it is again a perfect linear relationship between X

3 and X 2. So, whenever you run a regression, 1 variable will get dropped.

So, it depends; Stata or other softwares can decide which variable it will drop. So, either X 2
or X 3 will get dropped, and 1 variable will be dropped. So, either it is going to be X 3 or it is

going to be X 2 here, any of these. So, essentially, this regression equation will show 1



coefficient for the intercept term, and 1 from either X 2 or X 3, and then 2 for X 7 and X 8.

So, there is no problem with X 7, X 8, because they are not linearly related with any of this.

Now, let us see what happens for equation 7. Equation 7, you have X 5 and X 4 and X 3. So,
they are all linearly related, whereas X 5 is a sum of X 4 and X 3. Now, here you have like X
3 and X 4, they are independent; they are not related; or they are not perfectly linearly
related; but X 5 is. So, that is why, because of this dependence, it will drop one of these

variables, either X 5 or it will drop X 3 or X 4.

So, it will again drop 1 variable in equation 7 here. And finally, in equation 8, the last
equation, here again | have my X 6 and X 5. There is a direct relationship, but they are not
linear, so, there is a logarithmic relationship. So, here, there will be no drop of any of these
explanatory variables. All the explanatory variables will be there because of the fact that in

this relationship, in equation 4, X 6 and X 5, they are not linearly related.

So, that is basically the idea of a perfectly linear relationship and imperfect relationship
basically. So, in case of perfect collinearity, there is a problem. And in case of imperfect
collinearity, there is the problem of multicollinearity, and we have to see to what extent we
have the multicollinearity problem. Now, let us do one hands on example, to get an idea how
it is happening.

(Refer Slide Time: 20:05)
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vkl 100.00

. clear

. import excel “/Users/Tutan/Desktop/VGSoM/Course_Outline/Econometrics/Econometrics 2620-21/Session XIX/Cobb-Douglas_Updated.xlsx", she
> et("Sheetl") firstrow




So, let me actually open a data set; and | am using the software Stata, Stata 14, and | am
using a very common sort of problem or common sort of equation that we have in
macroeconomics that is Cobb-Douglas production function.

(Refer Slide Time: 20:30)
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1 13832840 424471 2689076  17.46286 12058599 14.804708 4.5042615 1.8461093 -.10798736  .[o e 5
2 2 18054 19895 51997 10.406307 9.8962239 10068146 4.5080838 1.0699228 -.92306602  |ame e
3 736129 206893 2308272 16.96251 12239957  14.65201 47425518 24120526 -.43423605 - e
4 o 6981963| 304055 1376235 1711068 12.620964 14.134862 44857159 1.5098982 -.36188677 -, e
5 S 207508 1809756 13554116 10107922 14408703 16422201 47892184 2.0134983 38857301 ¢ e
6 6 10462751 180366 1799751 16784014 12102743 14398146 46812696 2.2054023 -.52048862 -, e
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8 8 M33IST  SAMSS 421064 1647660 100513 12.950541 5.5715509 2.0454102 ~.6ad217g - 3L e
9 9 15091 w9 7188 1098235 76152983  B.860168  4.367137 12648699 -.95074398 -
1 10 4728946 471211 2061281 17671806 13063062 14831205 4607451 1768144 09077052
1 1 635125 659379 3540475 17956885 13.309054 15.079771 45598316 1.6807177 44128314
2 12 1809052 528 M1 14408314 9.7715549 118039 46367588  2.122345 -.920852 -
I 13 10511786 75414 84820 16.168007 11230748 13.650805 4.9372507 24201472 -.72000343 -
1 14 105348 063156 5870409 1.472561 1377797 15.565435 4.6945896 18074642 1.3843569
15 15 90120450 835083  SB32503 18316658 13.635286 15578957 4.6813712 1.9436704 1.8454544 1
16 16 39079550 336159 1795076 1748111 1272534 14.401059 4.7557702  1.6757196 -,09223496 -.
n 1 26760 246144 1505118 16.943043 12.413672 14.262458 4.5207723 1.8687862 -.454S0568 -,
18 18 3866340 384484 2503693 17.470997 12.850657 14733277 4.6113396 18736199 -.10099952 -,
19 19 69910555 2619 4726625 18.862727 12.283723 15.368722 5.7790041 3.0843986 5949806 B
» W 7S67 G221 AISI 1507608 131731 1293635 4.SRTE1 16216180 - 7881791 -
2 2 266 S 17916 16676701 12071712 14.363121 4804909 22914085 -4GTISE0 -, v
2 2 4604202 35501 2706065 17.645115 12781846 14.811007 4.8632684  2.0291603 06300743
3 23 Q358 043298 5204356 1834094 13757137 15.482152 4.5638022 1.7250143 1.8948278
u 24 4B304274 456553 2833525 17.693031 1303146 14.857032 4.6615705  1.825572 11338187
% 5 120793 267806 1212281 16.660879 12.498018 14.008015 4.1628613 1.5099962 -.57974863 -,
% % ATMOIST 43047 0412 17.672860 12.993227 14.692696 4.6796421 1.6994685 .09189194 -

Now, we know that in Cobb-Douglas production function, output and labor and capital, they
are related. And | have like this linear values for output, labor and capital. And at the same
time, | have logarithmic value In output, In labor and In capital. So, for this purpose, we just
need to remember these variables. We do not need other variables now. And here, what |

have done is, | have included other variables.

So, L2 is basically a square of the value for the labor. So, basically, L2 is L square. And
Labor 1, this variable | have created. | have created labor; so, | have defined the variable
here; labor plus 1 is my labor 1. So, | have just added a value of 1. So, it is again a linear
relationship between labor and labor 1. So, labor 1 is equal to labor plus 1. And here | have,

in labor 2, what | have done is, | have basically multiplied labor with 2.

So, the value of labor, whatever | have, | have multiplied 2 into labor. And this L2 is L
square, and labor 2 is 2 into labor. So, L2 is a nonlinear relationship; it is square term. And
this labor 1 and labor 2, they are linear relationship. So, basically, if I write them down, so,
how this will look like is this.

(Refer Slide Time: 22:04)
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So, the variable L2 is basically labor square. Labor 1 is equal to labor plus 1; and labor 2 is
equal to 2 into labor; just to avoid confusion, we have named it this way, but just to avoid
confusion, | have just written it again. Now, if | run a regression with all these variables;
now, we have to say using our previous concepts where, how many variables my Stata
program will actually drop if I run a regression? And the command is going to be; actually,
use a do file here or I can just simply write the command here.

So, if I write; so, the command is regress. And let us say my regression, | am doing In output
on output, on log of output, with In labor, In capital, just labor, just capital; then 1 am using
L2 which is square of the labor value; and then labor 1 which is labor plus 1; and labor 2
which is labor into 2. Now, in this equation, before I actually run the regression, | will ask

you to guess how many of the explanatory variables will get dropped.

So, based on the previous concepts, so, L2 is a square, labor square; so, it will not get
dropped, it is fine. This one, there is no problem. Here it is a problem because it is a linear
relationship and perfectly linear relationship. And similarly, this one also, it is a perfect linear
relationship. So, basically, if I run the regression, there has to be 2 variable drops. So, 2
variables have to be dropped.

(Refer Slide Time: 24:07)
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. regress lnoutput nlabor Lncapital labor capital L2 Laborl Labor2
note: labor omitted because of collinearity
note: Laborl omitted because of collinearity
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Source 55 df MS Number of obs = 51
F(5, 45) 244.97
Model 91.961578 5 18.3923156 Prob > F 0.0000
Residual 3.37855306 45 075078957 R-squared 0.9646
Adj R-squared =  0.9606
Total 95.340131 58 1.90680262 Root MSE 27401
noutput Coef.  Std. Err. t  Prt] [95% Conf. Interval]
Inlabor 5308681  .143218 3.71  o.e01 .2424123 8193239
Tncapital L4719673  .1244829 3.79  0.000 \2212458 7226888
labor 0 (omitted)
capital 3.26e-08 5.51e-08 0.5 0,558  -7.85e-08  1.d4de-07
L2 6.00e-14  2.65e-13 0.23 0.822 -4.74e-13  5.94e-13
Laborl 0 (onitted)
Labor2 | -1.71e-07 2.90e-07  -0.59 9,559  -7.56e-07  4.1de-07
_cons 3.848968 12504 5.31 0.000 2,388662  5.309273
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fegress Lnaatput Lalabor Incaptal Labor capital L2 Labord | ¢

And if we run it, we will see that actually there are 2 variables Stata has decided to drop. So,

out of these 3, labor, labor 1 and labor 2, it will drop 2 variables out of these 3 variables. So,

Stata has chosen to drop labor and labor 1. Now, let me actually again rewrite the code. If |

just change the variables a little bit, like if I omit, say labor 2. So, how many variables will be

dropped here? So, now the collinearity, the problem is only between labor and labor 1.

Then L square, labor square has no problem, because it is not a linear relationship; though it

is a direct relationship, but it is not a linear relationship. So, here, there will be 1 variable

drop.

(Refer Slide Time: 24:57)
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. regress lnoutput lnlabor lncapital labor capital L2 Laborl
note: Laborl omitted because of collinearity

Source SS df Ms Number of obs = 51
F(5, 45) 244,97
Model 91.961578 5 18.3923156 Prob > F 0.0000
Residual = 3.37855306 45 .075078957 R-squared 0.9646
Adj R-squared = 0.9606
Total 95.340131 50 1.90680262 Root MSE .27401
noutput Coef.  Std. Err. t Pt [95% Conf. Intervall
nlabor ,5308681 143218 3.71  0.001 12424123 .8193239
ncapital 4719673 1244829 3.79 0.000 12212458 .7226888
labor | -3.42e-07 5.8le-07  -0.59 0.559  -1.51e-06  8.28e-07
capital 3.26e-08  5.5le-08 0.59 0.558  -7.85e-08  1.44e-07
L2 6.00e-14  2.65e-13 0.23 0.822 -4.74e-13  5.94e-13
Laborl 0 (omitted)
3.848968 172504 5.31 0.000 2.388662  5.309273

_tons

[310m ) w1 =

So, we will see that Stata has decided to drop labor 1. So, this is how we basically try to

understand if Stata is omitting variables. So, we will see that there is the problem of perfect



collinearity. And of course, we have seen in the case of dummy variable; | am not repeating
here; how we can actually see if you have all the dummy categories included, we will see that

Stata will decide to drop one of these variable because of the perfect collinearity problem.

So, that is about the perfect collinearity. And when we talk about imperfect collinearity, so,
basically, most of the cases, we will see imperfect collinearity. And again, | said like, in
imperfect collinearity, there are multicollinearity problem which is matter of a degree. So,
there are always some sort of imperfect collinearity and there is always some sort of
multicollinearity because of that; so, we will actually be concerned if the multicollinearity is

more than certain extent.

So, the last part of this; let me actually show you. When you try to understand the problem of
multicollinearity, what you do is; another way to actually understand is that, you can simply
plot scatter plotter; capital; and we will see.

(Refer Slide Time: 26:18)
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So, it is always a good idea to actually see what sort of relationships are there among the
variables. It is of course, it will be quite highly related because it is a log of capital in the y-
axis. So, there will be a very definite sort of relationship. So, when you try to understand the
problem of multicollinearity, what you do is, you actually plot all these different X variables

and see how they are related.

And if you see some sort of good relationship, like a very discernible pattern, so, then you

can claim that okay, there are some multicollinearity which might be present. So, this is



another way to understand if there are multicollinearity. Now, I will end the lecture here, the
introduction of multicollinearity, and we will see what are the implications of
multicollinearity on the regression coefficient on the R-square term and so forth in the next
few lectures. Thank you.



