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Hello and welcome back to the lecture on Applied Econometrics. So, today we are going to 

cover an important topic called multicollinearity. Now, when we spoke about the Gauss-

Markov assumptions regarding regressions, so we talked about different properties that we 

need to satisfy. So, multicollinearity is one among them. So, interesting thing about 

multicollinearity is that it is not something that we have to ensure that there is no 

multicollinearity, because there will always be some multicollinearity in a regression 

equation, but we have to ensure that the degree of multicollinearity is within some limit.  

 

So, we will explain what is multicollinearity and why we are more bothered about the degree 

as such for multicollinearity. So, multicollinearity, it arises because of the fact that we have 

many explanatory variables which might themselves be related, and usually that is the case. 

So, when we talk about any dependent variable, let us say we talk about kid’s education. So, 

when we talk about kid’s education, there are different explanatory variables; for example, 

father's education, father's income, and there are so many other variables and which are 

related.  

 

So, for a kid's education, it is very important that; usually we will see that the father's 

education and kid's education are related, because a father who is educated, he knows the 

value of education, and he will want his kid to also be educated. So, they are correlated; but 

at the same time, the father needs to have enough income to send his kid to a good school, for 

example.  

 

So, all these variables are important, but at the same time, what happens is that father's 

education and father's income is also related, because father's income was basically a 

dependent variable of father's education. So, this way, all these variables are related. All these 

explanatory variables are related amongst themselves, and at the same time, they are all 

explaining the new dependent variable which is the kid’s education.  



So, you take any other example and you will see the complex nature of this reality. So, 

everywhere, you will see that all these different explanatory variables which appears to be 

very, like directly related to the dependent variable; we will see that the independent variable 

themselves are related.  

 

And we will do an example where we will see the number of hours worked by female in the 

labor force, how they are related to different variables like husband's education, husband's 

wage, husband's age, the female's parents' education, female's parents' income, the number of 

kids that female has, the number of kids who are below certain age group, number of kids 

above certain age group, the tax the family pays and so forth.  

 

And again, if we look at the independent variables, we will see that the independent variable 

themselves are very highly related. For example, husband's education and husband's income, 

or husband's income and husband's wage, father's education and mother's education. And so, 

all the variables that we will see as the X variable, we will see that they are quite clearly, they 

are also related.  

 

So, that is why, because the reality is some complex, we will see all the explanatory 

variables, they are actually themselves are related. So, multicollinearity is essentially a 

measurement of how much this sort of relationships are there among the independent 

variables, among the X variables. So, that is what we see in multicollinearity. And if we have 

multicollinearity, we never say that we are violating Gauss-Markov assumption.  

 

We have a problem when we have perfect collinearity, or we have a problem when we have 

very high multicollinearity. And we are going to see, what do we mean by perfect 

collinearity? What do we mean by imperfect collinearity? What do we mean by high or low 

multicollinearity? So, let us give a couple of examples. So, first let me explain what do I 

mean by a perfect and imperfect collinearity. So, when I am dealing with perfect collinearity, 

so, perfect collinearity will normally come from equation like, let us say X 1 + 3 X 2 = 5. 
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So, they are like, it is a deterministic relationship. There is no stochastic component here. So, 

every time you basically get, if you want to express X 2 in terms of X 1, it is going to be 5 

minus X 1 by 3. So, all the time, the relationship is going to be like that. So, you do not have 

any component of randomness. So, you always get for a certain value of X 1, you always get 

a certain value of X 2. So, this is a case of perfect collinearity.  

 

Whereas, in case of imperfect collinearity, how we write it as, X 1 + 3 X 2 plus some 

stochastic component, let us say some error term u is equal to 5. So, in this case, you always 

have certain error term that will stop the equation from being a deterministic equation, and 

that is why you can run a regression equation. And when you have this sort of an equation, 

you can actually get a regression equation; we can also see the case of; this is a case of 

imperfect collinearity.  

 

And only in case of imperfect collinearity, we have this problem of multicollinearity that we 

see; imperfect collinearity. So, we will do some examples to see what is perfect collinearity, 

what is imperfect collinearity, where multicollinearity may arise; and some of the cues that 

we get at this stage, we will use when we actually elaborate different examples of 

multicollinearity. So, let me give you an example.  
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So, when we dealt with the concept of dummy variable, you remember; let us say, if there is a 

dummy variable, let us say gender, and you have 2 categories, male and female. Now, we 

always used one particular category as the reference or base category or base dummy. For 

example, if I use female as a reference or base category, so, we used the male in the 

regression equation, and we saw how male is changing with respect to the female.  

 

So, that is how we explain a dummy variable. Now, if I include both male and female in the 

regression equation, so, what we will see is that, your regression equation will actually stop 

because there is a problem of collinearity; it will give you an error message that there is a 

problem of collinearity, perfect collinearity. Now, perfect collinearity here in the case of 

dummy variable, comes from the fact that; so, like, if I define this dummy as D, the moment 

you add all the different values of dummies; so, let us say D i over all i; so, it will always 

give me a value of 1, because if someone is male, then he is not female, or if someone is 

female, she is not male.  

 

And if I represent this dummy with respect, using this values 0 1; let us say female is the base 

dummy, so I put 0. So, if someone is female, if female is 0, then the person has to be male; 

so, it is 1. And if a person is male, then that person has to be female; if not male, then the 

person has to be female. And if the person is not male, that person has to be female, and so 

forth. So, if I add these values, it will always give me a value of 1, because 0 plus 1 is always 

1.  

 



Now, the problem that we have in case of dummy variable we have seen is that, this 

summation of dummy which gives me a coefficient of 1 is actually perfectly linearly related 

with the coefficient of the intercept terms. So, intercept term always gives you a certain 

value, but that intercept term could also be like, represented as 1 into certain, the coefficients.  
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So, the value of the variable is 1 and it has certain coefficient value. So, now, because of that, 

so, in case of dummy, it has 1 as a variable value, the X value, and it has a coefficient value. 

Now, because both of these variables; so, dummy variable and intercept term, both of these 

has this 1 as the value of the variable; so, it will always give rise to a problem of a perfect 

collinearity.  

 

So, because 2 variables, they are having the same value; so, they are varying in the same 

manner; so, that is why they have a problem of perfect collinearity. So, similarly, if I have; 

the example we have written;  
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So, if I use X 1 + 3X 2 = 5. And if I have in my regression, let us say regression equation 

where I write Y is equal to beta 1 plus beta 2 X 1 plus beta 3 X 2; and I can add a u, error 

term. If I run this regression equation, so, what will happen is that, because X 1 and X 2, if 

they are perfectly linearly related, so, my regression equation actually dropped one of these 

variables.  

 

So, either it will say error message that it cannot run the regression, because X 1 and X 2 are 

perfectly linearly related or it will drop one of these variables. If you are using a software like 

Stata, so, it will drop one of these variables; or for that matter, R and other softwares also, 

they are smart enough to do that. So, it will drop one of these variables and it will actually 

run the regression for you; but there will be a drop of 1 variables, and that is because of the 

problem of perfect collinearity; but as such, there is no problem.  

 

If you have some amount of stochastic component involved, then there is no perfect 

collinearity and you will have a good regression equation. So, then the question of degree of 

multicollinearity will come if you have the stochastic regression equation. Here we have to 

kind of see that there are different type; we will do couple of examples. And one thing we 

have to remember that, when we do not have; I mean, there could be relationship, basically a 

very defined relationship, but the relationship is not linear.  

 

So, I am talking about collinearity. So, if the relationship is not linear, then you do not have; 

you still have the problem multicollinearity, but you do not have the problem of perfect 

collinearity. So, let us say, if I represent, my X 2 is equal to log of X 1. So, here the 



relationship is pretty defined, but they are not linear. So, the moment it is not linear, you do 

not have perfect collinearity problem, you still have the collinearity problem, the 

multicollinearity problem, but it is not the perfect collinearity problem.  

 

Or you can write maybe X 3 is equal to say X 2 square or so forth. So, then again, it is not a 

linear relationship; so, here, again, you will not have perfect collinearity problem, but you 

will have multicollinearity; you will have imperfect collinearity. So, that is what we are going 

to see in next few examples. So, let us do some examples. So, let me actually create a small 

quiz for you, and we will try to answer the quiz.  
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We will do a hands on, and then we will get back to this and we will try to answer the quiz. 

So, my first question is that, suppose I have my X 2, let us say; X 2 = X 1 + 2; my equation 

number 1. Then I have let us say my X 3 = 2 X 2; equation number 2. Then I introduce some 

random variable X 4. And let us say my X 5 = X 4 + X 5. Then I have my X 6. My X 6 is, let 

us say I will define X 6 as log of X 5. So, these are like my 4 equations.  

 

Now, my question to you is, if I run a regression, and the regression equation actually takes 

care of the collinearity, and it actually drops variable if there is a collinearity problem, so, 

how many variables will be dropped in each of this equation if my regression equation is of 

this form? Let us say I have 2 other variables, X 7 and X 8. And for each of this equation, my 

regression equation is like that: Y is equal to beta 1 plus beta 2 X 1 plus beta 3 X 2 plus X 7 

plus X 8.  

 



So, this is 1 equation, let us say. Then you have, you run another regression equation, Y is 

equal to beta 1 plus beta 2 X 3, and then beta 3 X 2; I am just taking the variable from all 

these above equations; and then I add X 7, X 8. Let us say I have to introduce some other 

coefficient; so, beta 4 beta 5. And we can also add some error term here; so, here, again, I 

will add beta 4 beta 5 X 8 plus some error term. I minimise it.  

 

Let me write couple of more equations. So, Y is equal to, in this case is going to be beta 1 

plus beta 2 X 5, beta 3 X 4, and beta 4 X 5 X 3. I use the X 3 from here to here; so, X 3. So, 

that is going to be beta 4 X 3. The equations might look a little messy, but it is actually very 

simple thing what I am doing. What I am just trying to do is, I am basically introducing; in 

any regression equation, I am having these 2 terms, and I am incorporating all the variables 

that I am writing in the different equations.  

 

So, for every different regression equation, I am using different variables from the different 

equations. In this regression equation, I also have to add; actually, I have not added X 7 and 

X 4, but it does not matter really; let us say we omit X 7 and X 8. And then, the last equation, 

let us say I write Y is equal to; have to minimise the size further; I hope it is still visible; Y is 

equal to beta 1 plus beta 2 X 6 plus beta 3 X 7 or beta 4 X 7 beta 5 X 8 plus some error term.  

 

Now, I have all these equations. I have written very long equations. Now, let us say I also 

name them; this is 5, this is 6, this is 7 and this is 8. Now, I will let you guess. If I run 

regression for all these different equations, so, how many variables will be dropped? So, in 

the first equation; I will actually try to brainstorm here, and then we will do a hands on to 

show you what exactly is happening. So, let us look at equation 5.  

 

And in equation 5, I have X 2 and X 1 are there; they have a perfect linear relationship; so, 

they are perfectly collinear. And because of that, definitely 1 variable has to be dropped. So, 

either X 1 or X 2 will be dropped, and the regression will run. So, there will be 1 variable 

drop in this case. Similarly, for equation 2, it is again a perfect linear relationship between X 

3 and X 2. So, whenever you run a regression, 1 variable will get dropped.  

 

So, it depends; Stata or other softwares can decide which variable it will drop. So, either X 2 

or X 3 will get dropped, and 1 variable will be dropped. So, either it is going to be X 3 or it is 

going to be X 2 here, any of these. So, essentially, this regression equation will show 1 



coefficient for the intercept term, and 1 from either X 2 or X 3, and then 2 for X 7 and X 8. 

So, there is no problem with X 7, X 8, because they are not linearly related with any of this.  

 

Now, let us see what happens for equation 7. Equation 7, you have X 5 and X 4 and X 3. So, 

they are all linearly related, whereas X 5 is a sum of X 4 and X 3. Now, here you have like X 

3 and X 4, they are independent; they are not related; or they are not perfectly linearly 

related; but X 5 is. So, that is why, because of this dependence, it will drop one of these 

variables, either X 5 or it will drop X 3 or X 4.  

 

So, it will again drop 1 variable in equation 7 here. And finally, in equation 8, the last 

equation, here again I have my X 6 and X 5. There is a direct relationship, but they are not 

linear, so, there is a logarithmic relationship. So, here, there will be no drop of any of these 

explanatory variables. All the explanatory variables will be there because of the fact that in 

this relationship, in equation 4, X 6 and X 5, they are not linearly related.  

 

So, that is basically the idea of a perfectly linear relationship and imperfect relationship 

basically. So, in case of perfect collinearity, there is a problem. And in case of imperfect 

collinearity, there is the problem of multicollinearity, and we have to see to what extent we 

have the multicollinearity problem. Now, let us do one hands on example, to get an idea how 

it is happening. 

(Refer Slide Time: 20:05) 

 



So, let me actually open a data set; and I am using the software Stata, Stata 14, and I am 

using a very common sort of problem or common sort of equation that we have in 

macroeconomics that is Cobb-Douglas production function.  
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Now, we know that in Cobb-Douglas production function, output and labor and capital, they 

are related. And I have like this linear values for output, labor and capital. And at the same 

time, I have logarithmic value ln output, ln labor and ln capital. So, for this purpose, we just 

need to remember these variables. We do not need other variables now. And here, what I 

have done is, I have included other variables.  

 

So, L2 is basically a square of the value for the labor. So, basically, L2 is L square. And 

Labor 1, this variable I have created. I have created labor; so, I have defined the variable 

here; labor plus 1 is my labor 1. So, I have just added a value of 1. So, it is again a linear 

relationship between labor and labor 1. So, labor 1 is equal to labor plus 1. And here I have, 

in labor 2, what I have done is, I have basically multiplied labor with 2.  

 

So, the value of labor, whatever I have, I have multiplied 2 into labor. And this L2 is L 

square, and labor 2 is 2 into labor. So, L2 is a nonlinear relationship; it is square term. And 

this labor 1 and labor 2, they are linear relationship. So, basically, if I write them down, so, 

how this will look like is this.  
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So, the variable L2 is basically labor square. Labor 1 is equal to labor plus 1; and labor 2 is 

equal to 2 into labor; just to avoid confusion, we have named it this way, but just to avoid 

confusion, I have just written it again. Now, if I run a regression with all these variables; 

now, we have to say using our previous concepts where, how many variables my Stata 

program will actually drop if I run a regression? And the command is going to be; actually, 

use a do file here or I can just simply write the command here.  

 

So, if I write; so, the command is regress. And let us say my regression, I am doing ln output 

on output, on log of output, with ln labor, ln capital, just labor, just capital; then I am using 

L2 which is square of the labor value; and then labor 1 which is labor plus 1; and labor 2 

which is labor into 2. Now, in this equation, before I actually run the regression, I will ask 

you to guess how many of the explanatory variables will get dropped.  

 

So, based on the previous concepts, so, L2 is a square, labor square; so, it will not get 

dropped, it is fine. This one, there is no problem. Here it is a problem because it is a linear 

relationship and perfectly linear relationship. And similarly, this one also, it is a perfect linear 

relationship. So, basically, if I run the regression, there has to be 2 variable drops. So, 2 

variables have to be dropped.  
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And if we run it, we will see that actually there are 2 variables Stata has decided to drop. So, 

out of these 3, labor, labor 1 and labor 2, it will drop 2 variables out of these 3 variables. So, 

Stata has chosen to drop labor and labor 1. Now, let me actually again rewrite the code. If I 

just change the variables a little bit, like if I omit, say labor 2. So, how many variables will be 

dropped here? So, now the collinearity, the problem is only between labor and labor 1.  

 

Then L square, labor square has no problem, because it is not a linear relationship; though it 

is a direct relationship, but it is not a linear relationship. So, here, there will be 1 variable 

drop.  
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So, we will see that Stata has decided to drop labor 1. So, this is how we basically try to 

understand if Stata is omitting variables. So, we will see that there is the problem of perfect 



collinearity. And of course, we have seen in the case of dummy variable; I am not repeating 

here; how we can actually see if you have all the dummy categories included, we will see that 

Stata will decide to drop one of these variable because of the perfect collinearity problem.  

 

So, that is about the perfect collinearity. And when we talk about imperfect collinearity, so, 

basically, most of the cases, we will see imperfect collinearity. And again, I said like, in 

imperfect collinearity, there are multicollinearity problem which is matter of a degree. So, 

there are always some sort of imperfect collinearity and there is always some sort of 

multicollinearity because of that; so, we will actually be concerned if the multicollinearity is 

more than certain extent.  

 

So, the last part of this; let me actually show you. When you try to understand the problem of 

multicollinearity, what you do is; another way to actually understand is that, you can simply 

plot scatter plotter; capital; and we will see.  
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So, it is always a good idea to actually see what sort of relationships are there among the 

variables. It is of course, it will be quite highly related because it is a log of capital in the y-

axis. So, there will be a very definite sort of relationship. So, when you try to understand the 

problem of multicollinearity, what you do is, you actually plot all these different X variables 

and see how they are related.  

 

And if you see some sort of good relationship, like a very discernible pattern, so, then you 

can claim that okay, there are some multicollinearity which might be present. So, this is 



another way to understand if there are multicollinearity. Now, I will end the lecture here, the 

introduction of multicollinearity, and we will see what are the implications of 

multicollinearity on the regression coefficient on the R-square term and so forth in the next 

few lectures. Thank you. 


