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Hello and welcome back to the lecture on Applied Econometrics. So, in this lecture, we are 

going to talk about the properties of estimator. Now, estimator, as we have seen, is something 

that is a sort of a mechanism to reach from sample to population. So, we would never know 

the population characteristics; so, all you can do is, we can get some sample characteristics 

from the data we have drawn from the sample, and we basically use that mechanism to go 

from the sample characteristics to population characteristics.  

 

So, that is what we call estimator. Now, this mechanism of estimator, it is not without any 

properties; it has certain properties and we will see, these properties are really important, 

because these properties are very helpful when we are deriving a regression equation and the 

coefficient. So, under what condition we should run a regression or what are the things we 

should take care when we run a regression, that will be coming from the properties of the 

estimators.  

 

So, we need to sort of be familiar with the properties of estimator and why they are 

important. So, let us start with this. We have talked about the double structure of variable. So, 

if we have a random variable and if we run an experiment, so, the random variable can 

generate a potential outcome before you actually run the experiment. So, you have a 

distribution of the potential outcome.  

 

So, that is something, is a before realisation thing; but when you actually run the experiment, 

when you actually get the result, that is something you get after realisation. So, using that 

idea, let me again use that idea to explain the properties of estimator.  
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So, let us say I start with after realization; it is easier to understand. So, let us say, I am 

interested to know the class quiz marks. Let us say I am actually having a very big class and I 

really do not have a system where I am keeping all the details. So, I just want to get an 

estimate of what is the average performance or what is the performance of my students like 

of the whole average performance of the whole population, but I do not have a means to sort 

of get all the details.  

 

So, let us say I draw a sample of size n; it is a test out of 10, and I get the sample mean X 1 

bar is equal to 4. Then I draw another sample and I see, the X 2 bar is equal to 6. Now, I 

could draw many number of times, but I do not want to do that. So, based on these two, I 

want to estimate the population characteristics, which is the mean, the average score of all the 

students in the class; and that is, let us say it is X bar.  

 

And I look at these two values and I basically take an average, which is like, 4 and 6 average, 

this is basically 5. Now, how do I come to this number 5? What I have actually done is, I 

have assigned equal weight for X 1 and X 2; I have taken 0.5 as a weight for X 1 and X 2. 

How did I come to this number? So, that is what we need to understand. Now, this is the case 

of after realisation, I use this example just for illustration purpose, because it is easier to 

understand.  

 

Now, before realisation is something that will help us to actually generalise the case. So, it is 

essentially, all the potential outcomes we are considering. Now, we say that for an unbiased 

estimator, the expected value of sample mean is equal to population mean. So, here, basically 



the average that we have taken, this is the expected value of sample mean that is equal to 

population mean. Now, why do we say that?  

 

Because we know that we will never have the true population mean in my sample 

distributions. So, if I have all these different observations, they can be equal to the population 

mean only by accident. They can never be equal to the population mean; I mean, they can be, 

but that is by accident; but usually what you will see, all the numbers are, all the observations 

are actually spread across the true population mean.  

 

So, if in the example, the true population mean is actually 5, so, I will have different samples 

I draw, some of the observation I will have like 4.5, somewhere I will have 6.6 and so forth; 

but everything will be pretty close to the number 5. So, that is what is the idea of; when we 

draw sample means and we actually go, try to infer the population mean; and the reason we 

take expectation is because of this, because I will never have the true population parameter, 

but I will have all the observations pretty close to the population parameter.  

 

And when I actually take an expectation, which is basically an average, I get the true 

population parameter. Now, let us put it in a formula. So, let us say my estimator is Z; and 

when my estimator is Z, I can write it down as; let us say, I do not know the weight of my 

first sample mean, second sample mean; so, let me write down as lambda 1 X 1, lambda 2 X 

2. Let us say, for the sake of simplicity, I am basically taking one observation instead of 

sample mean.  

 

So, my X 1 is nothing but the sample mean, but I am just writing as X 1, not X 1 bar. Now, if 

I have this equation, so, I have to understand the expected value of Z, because that is what I 

am trying to get. So, the expected value of Z is equal to lambda 1, expected value of X 1 plus 

lambda 2 expected value of X 2. Now, I know, for an unbiased estimator, my expected value 

of Z and expected value of X 1 are going to be the same.  

 

So, I will write lambda 1 expected value of Z plus lambda 2 expected value of Z. So, which 

essentially would mean my lambda 1 plus my lambda 2 is equal to 1. Now, let me write 

down; this is an unbiased estimator I am talking about, which is in this case Z. Now, for an 

unbiased estimator, what we see is, my lambda 1 and lambda 2 is equal to 1. Now, the 

moment I get this equation, I can have many values for lambda 1; many values for lambda 2; 



lambda 1 can take 0.2; lambda 2 can take 0.8; lambda 1 can take 0.3; lambda 2 can take 0.7 

and so forth.  

 

So, there are infinite number of possibilities. Now, if I use all these infinite number of 

possibilities in this equation, I am going to get different value for X bar. So, they are going to 

be sort of different; I am basically, the moment I am putting different values of lambda 1 and 

lambda 2, my mechanism, the mechanism, the estimator that I said is going to be different. 

So, then, there are so many different estimators now.  

 

So, which one to choose? That is the question. To decide on this, we have to consider the 

other properties of estimators. The first property is that we have to have an unbiased 

estimator; that is known; but that is not sufficient, so, we have to consider other properties. 

And the other property is that to have efficiency or reliability. 
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And let me explain what I mean by efficiency or reliability. Now, by efficiency or reliability, 

it means that the observations that I draw from the sample, need to be as close as possible to 

the true population parameter. So, what it means is, if I have my true population parameter 

somewhere here, I will want my distribution to be something like this; let us say a different 

colour. It could be something like this. I can have other sort of distributions of estimator.  

 

So, these are all; or let me actually make it thick, so that these are distributions for estimator. 

Let us say this is for estimator A, and the green one is for estimator B. Now, what I will want 

is, the observations that I get, they should be pretty close to the population distribution, they 



should be as close as possible. So, that is what is represented by my estimator A. Whereas, 

for estimator B, I will see that the observations are spread across, their variance is very high.  

 

So, essentially, it means that most of my observations from estimator A are coming to true 

population parameter. Whereas, for observations from estimator B are actually quite away 

from the true population parameter. So, we can take an example; but it does not mean that all 

my observations of estimator B are actually close to the true population parameter. So, there 

could be something here; there could be some values here; whereas, some observations under 

estimator B could be actually very close to the population parameter.  

 

So, it is in general the case that most of the observations in estimator A are close to the true 

population parameter, whereas, most of the observations in estimator B are actually spread 

across basically. So, we can take an example; let us say the car accident, and if the person is 

wearing seatbelt. Now, in most of the cases, you will see that, if a person is wearing seatbelt, 

there was no accident.  

 

But there could be cases where the person is actually wearing seatbelt, but still there is 

accident or death let us say, the accidental death; so, there are still accidental death. So, that is 

what, you may not expect that all the observations are going to be near to the true population 

parameter, but there could be some observations which would be a little away from the true 

population parameter.  

 

Now, having said that, if I have to achieve this efficiency reliability, so, I have to have a 

minimum variance. So, essentially, what we try to do is, we actually minimise the variance. 

And if I want to minimise the variance, what I have to do is, I have to minimise the variance 

of my estimator. So, my estimator is this, and I have to minimise the variance. So, let us say I 

write variance of Z; I write it as lambda 1 X 1 plus lambda 2 X 2 and I use Var of this.  

 

The moment I expand it, it becomes lambda 1 square Var X 1 plus 2 lambda 1 lambda 2 

Covar X 1 X 2 and then lambda 2 square and Var X 2. Now, how can I then further simplify 

this equation? So, if I have this Covar X 1 X 2, it will be equal to 0. And the reason is, I have 

assumed that my samples are independent. So, they are not dependent on each other. So, the 

moment I have the samples independent, I will have my covariance term 0, which would 

mean I will have lambda 1 square Var X 1 plus lambda 2 square Var X 2.  



Now, recall the fact that, all this, in this random variable that we are sort of drawing, in the 

experiment we are doing, are basically identically distributed. They are independent; so, that 

is one criteria. They are also identically distributed. Basically, they are IID random variable. 

So, this is an assumption we have made, because it will make our life easy. So, the moment I 

have them as identically distributed, I can simply say some; so, all the variances are going to 

be the same; so, let us say I write sigma X.  

 

So, I will have lambda 1 square sigma X square plus lambda 2 square sigma X square. So, 

which would mean sigma X square lambda 1 square plus lambda 2 square. So, I got an 

expression of the variance. Now, I have to find out how can I minimise the variance. So, I 

have to sort of find out the value of lambda 1 and value of lambda 2 that will help me to 

minimise the variance.  

 

Now, I will use some of the equations that I have already derived. So, let us say this is my 

equation 1 and this is my equation 2. Now, if I want to minimise this variance, so, I have to 

sort of get the minimum value of lambda 1 square plus lambda 2 square.  
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Now, from equation 1, I know lambda 1 is equal to 1 minus lambda 2. Now, substituting in 

equation 2, what I get is lambda 1 square plus lambda 2 square is equal to lambda 1 square or 

basically I can write lambda 1 minus lambda 2 square plus lambda 2 square. And if I expand 

it, I will have 1 minus 2 lambda 2 plus 2 lambda 2 square. Now, I want to sort of get the 

minimum value of it. And to get the minimum value of it, I have to basically minimise it.  

 



And if I do that, so, essentially 1 minus 2 lambda 2 plus 2 lambda 2 square or essentially it 

would mean that minus of 2 plus 4 lambda 2 has to be equal to 0, because I am doing 

minima. So, that would mean that my lambda 2 is equal to 2. Now, if you actually; how do 

you know it is a minima? Because, if you double differentiate; double differentiate is 

basically positive, right; if you double differentiate, it is going to be 4; so, which is positive.  

 

Sorry, lambda 2 is half. So, essentially, I get my minima at lambda 2 is equal to half. Now, if 

I substitute; so, essentially, what it means is that, for the case of all the lambdas; so, 

essentially, lambda 1 is also going to be half; 1 minus half is half. So, what it shows is that, 

for equal weights, if I have equal weights, then I will be able to achieve the minimum 

variance condition. Now, that is something that is very important finding.  

 

So, for all the different values of estimator that we have got, you have to assign equal weight 

to them to basically get to the population parameter that you want to estimate. Now, that is 

well understood from this derivation. Now, the question that will come is, well, where in 

regression equation we really use this lambda 1 and lambda 2? I have never seen a lambda 1 

and lambda 2 in regression equation. Well, so we need to explain that.  
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So, in a regression equation, you will see, what we do is, sometimes, we estimate the standard 

error. So, when we estimate the standard error, how we do is, we actually take the sample 

standard deviation. We take sample standard deviation because we usually do not have 

population standard deviation known. So, we use sample standard deviation and we do a root 

n, because we really do not want to draw the sample time and again.  



So, essentially, we get all the observations in the sample and get the sample standard 

deviation and divide by root n, and which is approximately equal to drawing samples 

multiple times and actually getting a sort of a group estimate like here, this standard 

deviation. So, you simply, by dividing root n, you get that. So, here the assumption is, you 

are assigning equal weight to all of the standard deviation values you are getting, which you 

are actually not doing, but the assumption is that.  

 

And that assumption is actually supported by the fact that all the lambdas, all the weights of 

the different estimators are equal. So, only if that is satisfied, you can actually say that the 

approximation you have done, that is correct. So, that is how we actually use the condition of 

minimum variance to, or the weight, from where you have actually got the weight of the, 

different values of the estimator to estimate the population parameter, they are actually going 

to be the same.  

 

Now, with this, we can actually say the properties of the estimators; we can summarise the 

properties of the estimators. So, I will say that the properties of estimator; so, let me write 

down; properties of estimator: It has to be a linear; we are talking about a linear regression 

here; so, it has to be linear. It has to be unbiased; and we have just seen; it has to be unbiased. 

And it has to be minimum variance.  

 

And the moment it satisfied all these conditions, we call the estimator as Best Linear 

Unbiased Estimator or in a word, in abbreviation, we can write it B L U E or BLUE. So, 

essentially, if I have to have the best kind of estimator in my regression equation, I have to 

have this property satisfied. So, what I mean by each of this term? So, by linear, I mean the 

linear in parameter that we have explained.  

 

By unbiased, we have just seen unbiased, what it means, it means the expected value of the 

sample mean has to be equal to population mean. And the minimum variance, so, the 

minimum variance condition is called the best because, if your unbiased condition is 

satisfied, you can get a plethora of possibilities for different weights that you can put for 

different values of the sample; but then, in order to get the minimum variance, you have to 

satisfy certain condition.  

 



And if you satisfy all these conditions, your estimator is going to be BLUE, Best Linear 

Unbiased Estimator. And we will see under this BLUE property of estimator, we will actually 

be able to outline all the different properties of the estimator, which we call the Gauss 

Markov assumptions. So, those assumptions are, you have to check when you are running a 

regression equation, whether those assumptions are satisfied.  

 

If they are satisfied, then you will be confident about your regression equation that you have 

done it correctly. So, that is why this properties of estimator are really important, and that is 

the implication of the properties of estimator. We have to get the Best Linear Unbiased 

Estimator and we will see that in regression equation, they are going to be extremely critical. 

So, with this, we will wrap up the lecture on the properties of estimators. 


