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Hello friends. Once again you are welcome to our Six Sigma journey and if you recall

we  are  presently  discussing  the  improved phase  of  our  DMAIC  cycle  and  in  the

improved phase, we  are  talking  about  design  of  experiment  and  the  various

experimentation strategies I want to improve the design, right. At the design stage I want

to improve the process right at the design stage and such kind of analysis that can help

me to understand the significance of the factors on the overall system or the product or

process can really help me to figure out that what is important and what is not. 

So, as a part of lecture 41 we will study factorial design. I have already given some idea

of this design when we talked about two way ANOVA analysis, but now we will try to

once again appreciate it with some more details.

(Refer Slide Time: 01:25)

So, we have a very beautiful quote experiment, learn, fail, learn and repeat. So, does not

matter  even if  you fail that  is  ok,  but  your  experimentation  will  provide  you lot  of

insight, you  can  learn  from that,  you  can  repeat  the  experimentation  with  different

approach and then you can infer the greater insights.



(Refer Slide Time: 01:53)

So,  recap  we  have  talked  about  minitab  application  for  randomised  complete  block

design.

(Refer Slide Time: 02:01)

In the last  lecture  and this  lecture  we will  basically  focus  on principles  of Factorial

Design, advantages  of  factorial  design,  statistical  analysis  of  factorial  design  and

illustrative example of factorial design. So, more or less the analysis system will remain

same, statistical  analysis will  remain same, but we would be addressing the different

conditions under which we are trying to execute the experimentation. 



(Refer Slide Time: 02:32)

So, the basic definition in principle as like this that factorial designs are most efficient for

this type of experimentation when you have to analyse two or more factors.  Factorial

design  mean  that  in  each  complete  trail  or  replicate  of  the  experiment  all  possible

combination of the levels of the factors are investigated. So,  I already briefed you that

what is the level. Suppose your factor is temperature, then you may have 10 degree, 50

degree, 70 degree three different levels. 

If there are a levels of the factor A and B levels of the factor b each replicate contains all

a into b treatment combinations. 



(Refer Slide Time: 03:19)

Now, many times  say  when you do the  design  of  experiment  and when factors  are

arranged in a factorial design, they are often said to be crossed. So, you have two factors;

you are creating number of replicates and often we call them as the cross factors and the

effect of a factor is defined to be the change in response produced by a change in the

level of factor. So, you change the temperature level, you change the pressure level and

then, that will lead to some change in the response may be the productivity, may be the

surface finish and this is what exactly we are trying to investigate. 

Now, typically  when  you do this, this  is  called  main  effect  because  it  refers  to  the

primary factor of interest in experiment. So, I am introducing one word that is the main

effect. So, suppose you have a pressure and temperature are two different factors, I will

call individually each factor as the main effect factor and that we try to analyse to our

factorial design. 



(Refer Slide Time: 04:26)

So, just try to appreciate that you have factor A, you have factor B and you have set the

factor A at low level that is 20 and you have set the factor B at the low level. So, this is

the condition where both the factors they are set at the low level.  Now this is the two

factor factorial experiment and the response is shown at the corner. It  means you are

receiving some response when both the factors are set at the low level. 

Now, just see factor A is set at the high level and factor B is set at the low level so, you

get the response 40. We are not taking the factors at this stage. Just assume that these are

two factors. Now, if you have the factors; factor  A at high level and factor  B at high

level, the response you get is 52 and if factor A is at low level and B is at high level, the

response you get is 30. So, this is the two factor factorial experiment.



(Refer Slide Time: 05:40)

And we will try to analyse this initially with a very simple understanding and then with

our  ANOVA analysis.  So,  typically  what  you  can  say  that  I  have  A factor  A  and

difference between the average response at lower level of A and the average response at

the high level of  A if  I want to numerically calculate, then just see  40 plus  52 by 2 is

equal to minus this should be minus 20 plus 30 by 2 equal to 21.

So, then you can just go back and see that what is happening here. So, I have 40 plus 52.

You can see here high level by 2 minus 20 plus 30 by 2. So, this will give me the change

in level  A because of change in my setting from low to high and same way you can

analyse. So, this is also minus, this is also minus and B 30 plus 52 by 2 minus 20 plus 40

by 2, this is 11.



(Refer Slide Time: 07:00)

So, once I can do this, then I have say the system like this which I am discussing and in

some experiment we may find that the difference in response between the level of one

factor is not the same at all levels of other factors. So, when this occurs you will say that

there is something else and this something else is basically called the interaction between

the factor. 

So, for example you consider a two factor factorial experiment and here I  am trying to

capture the effect of interaction also. So, you have 20 40 50 and there is something which

is  12. So, here  I have a suspicion, I  have a doubt that these two factors are interacting

with each other. 



(Refer Slide Time: 07:53)

So, now when you are analysing such kind of case just try to see that when the low level

of factor  B, that is  B minus, the A effect is called  50 minus 20 30. So, we can just go

back and try to see what it is. So, 50 minus 20 that is 30, so, you have this 50 and you

have this 20, so, 50 minus 20 that is 30. So, now same way you have say level factor B

plus and the A effect is 12 minus 40 that is minus 28. So, because effect of A depends on

the level  chosen for factor  B, we see that  there  is  an interaction  effect.  It  is  a  very

important conclusion that effect A depends on the level chosen of B. It means that there

is some interaction effect prevailing between A and B. 

Now, magnitude of this interaction effect can be easily found by the average difference in

these two A effects or AB minus 28 minus 30 divided by 2, so, this will be minus 29. So,

this is the large interaction effect whether statistical this is significant or not, I cannot say

unless I do the ANOVA analysis, but at least I can say that yes, if I look at the values of

main effect and I look at the value of interaction effect, yes there is a significant or say

contributing interaction effect, large interaction effect present. 



(Refer Slide Time: 09:38)

Now, just see that when you have factorial experiment with interaction, then a two factor

of factorial experiment with a response y you can show it as let us say corners and this is

my response against  factor  A.  So,  against  factor  A when it  is  at  low level,  what  is

happening in this? So, B plus and B minus and factor A is set at high level, then B plus

and B minus. 

So, what is the response I am getting when I set factor A at minus low level and I have

the  factor  B  at  minus  same  way  this  thing.  So,  B minus  and  B plus  lines  are

approximately parallel  indicating lack of interaction between  A and  B. So,  I am just

trying to  discuss another  case that  when you plot  it  and if  you find these two lines

parallel,  then its an indication that the interaction is not significantly present and it is a

lack of interaction situation. 



(Refer Slide Time: 10:49)

So, now let us see the different situation where you are trying to say that there is an

interaction, it means when you change the level of factor, yes there is a possibility that

your response will get reversed or there is an effect impact on the response. So, just try to

see what is happening. I have a factor A, this is set at low level and I am checking the

value of let us say B plus and then, when I change the factor A to higher level plus and

again I am setting B plus then I have change in response. 

Similar  way, when  I see this  B  minus  and  B minus  for  this  yes  there  is  change in

response and you can see that these  two lines are not parallel.  So, there is something

which is called interaction that is prevailing in the system. So, I cannot simply say that

suppose my factors  are  pressure and temperature, these two factors  main  factors  are

independent  of each other. There is  pressure into temperature there is  the interaction

effect that also prevails. So, this is the concept that we additionally include when we try

to analyse the factorial experiment.



(Refer Slide Time: 12:07)

And then my statistical model would look like this where y is equal to beta 0 that is the

intercept. You have beta  1 x 1 that captures the main effect,  beta  2 x 2 that captures

another factor effect, main effect, beta 1 2 x 1 x 2 and you have epsilon that is your error

component. So, this is how my model will look like. 

(Refer Slide Time: 12:34)

Now, let us try to go little bit deeper and investigate the values of the slope. So, what I

will say that beta  1, this is the system I have already explained and beta  1 is basically

estimate beta 1 hat is 21 by 2 and beta 2 hat is 11 by 2. So, from where this 21 and 11 has



come you can just see I can just go back to help you. 

So, you have computed this  21 and  11. So, this 21 is computed, this is minus; this is

minus when the factor a can be thought of as difference between the average response at

low level of A high level of A. So, this is the estimate of factor A, this is the estimate of

factor B. So, here when I am setting the regression model, this is x 1, this is x 2 and the

slope pertaining to this will be beta 1, this will be beta 2. 

Now, the question comes that why I divide this by 2; divide this by 2. So, now let me go

back to the slide which we were discussing. So, now why do you divide this by 2 and

this by 2? So, its very simple. I move from low to high level. In between there could be 0

and hence, I am moving two steps. So, my average value will be 21 by 2, this is one unit;

this is one unit. So, I am you I am moving by two step. So, I am taking the say average of

this that is  21 by  2, this is  11 by  25.5. So, this is the simplest way, in fact not much

statistical approach.

(Refer Slide Time: 14:27)

But I can estimate my beta 1 beta 2 and same way I can do it beta 1 2. So, in figure A, B

is equal to 1, so, I just divided by 1 by 2 and I have beta 0 that is the intercept. So, I have

this core at each corner and this is summation of these divided by 4. So, what I get here

is basically  35.5. So, my regression model would look like this  35.5 plus 10.5 x 1 plus

5.5, x 2 plus 0.5, x 1 into x 2. 



(Refer Slide Time: 15:06)

So, now when I have this model what I can say that this model is typically can be plotted

as a response surface and you can see that your response surface is basically curved and

this curvature is mainly because of the interaction effect and this is your contour plot

which also says that you have the curvature when you try to plot your responses on x 1 x

2 and y. So, this is my factor 1, your factor A x 1 factor B x 2 and this is my response

when I am trying to put it, I get the curvature; I get the curvature and it is mainly because

interaction effect x  1  into x  2  is present. So,  I will have a quadratic function, so, my

response function would be say curved in the nature.

(Refer Slide Time: 16:07)



So, when interaction effect is present, you will see that your response function will be

curved.

(Refer Slide Time: 16:12)

And this  basically  indicates  the  interaction  effect.  So,  this  is  what  exactly;  now the

advantages of factorial that it helps me to analyse the interaction. 

(Refer Slide Time: 16:20)

Now, you just see in order to appreciate this you just see this is one factor at a time

experimentation strategy. So, one factor at a time means suppose I have factor A and B

and  both  the  factors  are  set  initially  at  low level.  Now, I  am changing  factor  A to



positive, I will not change the level of factor B. It will be set at the initial condition. So, I

will call this as the initial condition IC let us say initial condition and when I will change

factor  B positive, I  will keep  A as the initial condition. So,  I  will not have plus plus

means both set at plus and n that is why this particular point is missing. 

So, when I conduct the experiment one factor at a time, I am missing this particular say

point  and  this  is  the  additional  information  I get  when  I conduct  the  factorial

experimentation when I am allowing the factors to be changed simultaneously and there

is nothing like setting or keeping a particular factor constant at the initial condition. 

(Refer Slide Time: 17:46)

So, this is what exactly we have to appreciate about the factorial experiment compared to

the one factor at a time, I do not say one factor at a time is an inferior strategy. That is

that  is  a  good  strategy in  some  of  the  conditions  when  you  feel  that  simultaneous

changing of the factor or the interaction effect are not really our interest of importance

and we just want to be happy with the one factor change at a time. Now, let us try to see

some illustrative example of two factor factorial design. 



(Refer Slide Time: 18:25)

So, my design is like this. I have the temperature setting and let us say 15 70 125, I have

the material  type  1, 2  and  3 and this is typically the problem referring from  Douglas

Montgomery design of experiment, life data of the battery design example. So, these are

the life data may be in hours, here it is hours. So, I want to see that suppose I am using a

particular material  and suppose there is a particular temperature, then will it  have an

impact on the life of the battery. 

So, you are using battery in automobile and many other say appliances vehicles. So, now

we have battery operated vehicles also. So, this is a very important problem that the

temperature at which the battery is getting exposed and the material you have used really

it has some impact on the life of the battery or not. So, this is what I am trying to analyse.



(Refer Slide Time: 19:40)

So, now let us try to appreciate the basic structure of the problem. So, my structure is

like this;  you can see that  I have some readings  in a particular  block and not block

particular  cell  rather. So,  factor  A and factor  B, I am taking  y  ijk  reading for  each

particular cell and this is how my data is organised. So, we will see the example it would

be better, clear.

(Refer Slide Time: 20:10)

But before that let me try to understand my model, what is my factorial design model?

So, my model looks like this y i jk this is the effect model  I am trying to analyse the



effect, y i jk is the response. So, i pertains to your particular factor and j pertains to your

another factor, you have temperature as well as you have material type and k you are

referring to a particular say cell because within a cell you are taking number of replicates

and in order to improve the accuracy of your experimentation. 

So, mu is the overall mean, tau i is the effect of the level of the row factor A, then beta j

is  the effect  of the jth  level  of the column factor  B tau,  beta  i  j  is  the effect  of the

interaction between tau i  and beta j and this is your random error component  that is

epsilon i jk. 

(Refer Slide Time: 21:19)

So, when you appreciate this basic model what  I  say that  y  i jk basically is the mean

specific to i and j plus epsilon i jk and mu ij. The way its represented in a statistical

mathematical term mu plus there is tau i effect, row effect,  column effect, interaction

effect and I can have a null hypothesis that tau i is equal to 0 means tau 1 is equal to tau 2

is equal to tau a is equal to 0 and I can say that at least one of the treatment tau a or tau i

is not equal to 0. 



(Refer Slide Time: 22:04)

So, now I think you are familiarise with such kind of treatment because you have two

factors row and column. Similar way you can set the null hypothesis alternate for the

column  factor,  similar  way  you  can  set  the  null  and  alternate  hypothesis  for  the

interaction and this will basically help you to investigate the two main effects and the

interaction effect.

(Refer Slide Time: 22:27)

So, statistical analysis of the model is like this you have yi triple dot basically denote the

total of all the observations. You take the summation under the ith level of factor A, you



have y dot j dot denote the total of all the observations under jth level of factor B, you

have y i j dot denote the total of all the observation in say particularly i jth cell and y

triple dot denote the grand total of all the observations.

So, these are the mean values corresponding mean values  yi dot refers to row  y j dot

refers to column yi j dot bar refers to cell and then, you have the grand averages.

(Refer Slide Time: 23:20)

So, these are the values you need to compute and then you can say find the total of y i

double dot y dot j dot using this  expression y ij  dot and y triple  dot and this  is  the

averages of each particular y i double dot bar y dot j dot bar y ij dot bar and this. So, I

hope now we are comfortable because we have done this many times. 



(Refer Slide Time: 23:50)

And now I want to basically find the sum of square. So, my approach will remain same, I

will try to minimise the error component and  I  am checking the expression that y i jk

minus y bar triple dot. So, I am trying to take the difference between individual value and

the grand mean and square it. So, that will help me to find the total sum of square what is

the total variability in my data and when I just expand this expression, then I will end up

with say this, this and this. 

So, basically you have number 1 and this expansion then when you expanded, you have

number 1 component, number 2 component and number 3 component. So, you can very

well understand that you have basically say this is number 1, this is number  2. I  will

rewrite this is your basically say rearrangement of the terms you have number 1, number

2, number 3 and number 4. So, you have derived total four components out of these and

these four components are basically nothing you have the row effect factor one effect,

second you have the column j is equal to 1 to b and you have say interaction effect and

you have the error component.



(Refer Slide Time: 25:32)

So, this is what you basically try to do. So, I have the expression like SS T is equal to SS

A plus  SS B plus SS AB plus  SS E and these  are  the  corresponding say degree  of

freedom.

(Refer Slide Time: 25:51)

So, once you have done this, then you can compute the degree of freedom and you can

also  estimate  the  mean  square  error  just  by  including  the  treatment  effect  to  the

population,  variance population variance and this will help you to appreciate the basic

logic behind the ANOVA analysis.



(Refer Slide Time: 26:13)

So, now if I look at my ANOVA table, then I have A treatment  B treatment interaction

error and total I have all the sum of square, I have degree of freedom, I have mean square

and I can find the F 0 values. So, once you have done this, then its very easy to analyse

the significance of treatment A treatment B and interaction. 

(Refer Slide Time: 26:39)

And then you can use easily this expressions SS T, SS A here. It is with respect to grand

mean square and because this is your row effect, so i is equal to 1 to a j is equal to 1 to b

column effect and you can easily find this value. So, interaction effect in error.



(Refer Slide Time: 27:02)
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(Refer Slide Time: 27:08)

So, now if you go back to our battery design experiment, this is the data and what you

can see here that there is a factor called temperature, there is a factor called material type

and you have the four readings in each particular cell. This is the total of all the four

readings, total of all the four readings, total of all the four readings and same way this is

the total of all the and this is the total of all the four readings and this is the total of my

particular row and this is the total of my particular column. So, this is what exactly you

can do. 

(Refer Slide Time: 27:43)



Now, you have the expression. So, just plug in the values you will get SS T, SS material,

then you have SS B that is the your temperature that is the another factor and when you

do this you have SS interaction. 

(Refer Slide Time: 27:59)

(Refer Slide Time: 28:03)

So, typically you will have the results like this. So, what you get here is basically the P

value for material type its 0.002. This is quite less than 0.001. So, you can say it is 0.00

this  is  your interaction  effect.  So,  by referring  these three, you can say that  if  I am

checking at level alpha is equal to 0.05 all these are falling in the rejection region. So,



my null hypothesis that there is no main effect A, there is no main effect B, there is no

interaction effect is rejected and hence, there is a significant impact of temperature on the

battery life, there is a significant impact of material on the battery life and interaction

effect is also significant in terms of battery life. 

(Refer Slide Time: 28:57)

You can check the model adequacy as usual by having the residual component. 

(Refer Slide Time: 29:04)

And you can find the residual for each particular  material  by subtracting it  from the

grand mean.
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And you can plot it. So, more or less this is going through the line and you have the

normality  assumption  varied  say  valid  and  this  is  when  you  plot, you  can  see  the

scattered net. So, there is an independence which is also verified. 

(Refer Slide Time: 29:32)

Now, these are the plots that shows the individual variability for a particular material

type. So, more or less there is nothing great to say observe more or less the variability is

there, not that too less too high and we can comfortable with the equal variance also. 



(Refer Slide Time: 29:56)

So,  now  with  this  let  me  plot  couple  of  thing for  your  understanding, for  your

introspection. Why factorial design is prepared over one factorial at a time OFAT? How

do you check the adequacy of your factorial analysis and what are the key advantages

with factorial  experiments? So, please try to go through the concepts covered in this

particular  lecture and this  will  really  help you to understand the concept  of factorial

design and how it helps us to analyse the factors. 

Simultaneously consider the interaction effect and basically it is all about revealing more

information  about  the  factors  and  their  interaction  effects,  so  that  I  can  design  my

processes product with greater accuracy and that can help me to have robust product and

design when it will be delivered to the customer. 
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So, I am mainly referring Montgomery, D. C you can also refer this particular book.

(Refer Slide Time: 31:00)

And conclusion is that a full factorial or factorial experiment is an experiment whose

design consists of two or more factors which with discrete possible values or levels and

experimental units take on all possible combination of these level across all such factors.

So, this is called fully crossed design and this helps investigator to study the effect of

each factor on response as well as the interaction effect. 

So, thank you very much for your interest in learning this particular session and you



would really be benefited if you solve a couple of example or you collect some real life

data and conduct the experimentation, then you would be able to internalise this concept.

So, we will advance in our say DMAIC cycle typically, right now, we are discussing the

improved phase of DMAIC cycle. We will advance in this and then, you will have the

better filling about the complete phase. So, keep revising. Be with me, enjoy. 


