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Lecture - 41
Factorial Design

Hello friends. Once again you are welcome to our Six Sigma journey and if you recall
we are presently discussing the improved phase of our DMAIC cycle and in the
improved phase, we are talking about design of experiment and the various
experimentation strategies I want to improve the design, right. At the design stage I want
to improve the process right at the design stage and such kind of analysis that can help
me to understand the significance of the factors on the overall system or the product or

process can really help me to figure out that what is important and what is not.

So, as a part of lecture 41 we will study factorial design. | have already given some idea
of this design when we talked about two way ANOVA analysis, but now we will try to

once again appreciate it with some more details.
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EXPERIMENT.
FAIL.

LEARN.
REPEAT.

So, we have a very beautiful quote experiment, learn, fail, learn and repeat. So, does not

matter even if you fail that is ok, but your experimentation will provide you lot of
insight, you can learn from that, you can repeat the experimentation with different

approach and then you can infer the greater insights.
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Recap

O Minitab Application for Randomized Complete Block Design

(RCBD)

So, recap we have talked about minitab application for randomised complete block

design.
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Concepts Covered:

CONCEPTS COVERED O Principles of factorial design

O Advantages of factorial design
O Statistical analysis of factorial design

O llustrative example of factorial design

In the last lecture and this lecture we will basically focus on principles of Factorial
Design, advantages of factorial design, statistical analysis of factorial design and
illustrative example of factorial design. So, more or less the analysis system will remain
same, statistical analysis will remain same, but we would be addressing the different

conditions under which we are trying to execute the experimentation.
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Basic Definitions and Principles

* Many experiments involve the study of the effects of two or more
factors.

* In general, factorial designs are most efficient for this type of
experiment.

* By a factorial design, we mean that in each complete trial or replicate of
the experiment all possible combinations of the levels of the factors are
investigated.

* For example, if there are a levels of factor A and b levels of factor B, each
replicate contains all ab treatment combinations.

So, the basic definition in principle as like this that factorial designs are most efficient for
this type of experimentation when you have to analyse two or more factors. Factorial
design mean that in each complete trail or replicate of the experiment all possible
combination of the levels of the factors are investigated. So, I already briefed you that
what is the level. Suppose your factor is temperature, then you may have 10 degree, 50

degree, 70 degree three different levels.

If there are a levels of the factor A and B levels of the factor b each replicate contains all

a into b treatment combinations.
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Basic Definitions and Principles

* When factors are arranged in a factorial design, they are often said to be

crossed.

* The effect of a factor is defined to be the change in response produced by a

change in the level of the factor.

* This is frequently called a main effect because it refers to the primary

factors of interest in the experiment.

Now, many times say when you do the design of experiment and when factors are
arranged in a factorial design, they are often said to be crossed. So, you have two factors;
you are creating number of replicates and often we call them as the cross factors and the
effect of a factor is defined to be the change in response produced by a change in the
level of factor. So, you change the temperature level, you change the pressure level and
then, that will lead to some change in the response may be the productivity, may be the

surface finish and this is what exactly we are trying to investigate.

Now, typically when you do this, this is called main effect because it refers to the
primary factor of interest in experiment. So, I am introducing one word that is the main
effect. So, suppose you have a pressure and temperature are two different factors, I will
call individually each factor as the main effect factor and that we try to analyse to our

factorial design.



(Refer Slide Time: 04:26)

Basic Definitions and Principles

* For example, consider the simple experiment in Figure

Figure: A two-factor factorial experiment, with the response
] thown at the comen

* This is a two-factor factorial experiment with both design factors at
two levels.

So, just try to appreciate that you have factor A, you have factor B and you have set the
factor A at low level that is 20 and you have set the factor B at the low level. So, this is
the condition where both the factors they are set at the low level. Now this is the two
factor factorial experiment and the response is shown at the corner. It means you are

receiving some response when both the factors are set at the low level.

Now, just see factor A is set at the high level and factor B is set at the low level so, you
get the response 40. We are not taking the factors at this stage. Just assume that these are
two factors. Now, if you have the factors; factor A at high level and factor B at high
level, the response you get is 52 and if factor A is at low level and B is at high level, the

response you get is 30. So, this is the two factor factorial experiment.
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Basic Definitions and Principles

* The main effect of factor A in this two-level design can be thought of as the difference
between the average response at the low level of A and the average response at the
high level of A.
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And we will try to analyse this initially with a very simple understanding and then with
our ANOVA analysis. So, typically what you can say that I have A factor A and
difference between the average response at lower level of A and the average response at
the high level of A if I want to numerically calculate, then just see 40 plus 52 by 2 is
equal to minus this should be minus 20 plus 30 by 2 equal to 21.

So, then you can just go back and see that what is happening here. So, I have 40 plus 52.
You can see here high level by 2 minus 20 plus 30 by 2. So, this will give me the change
in level A because of change in my setting from low to high and same way you can
analyse. So, this is also minus, this is also minus and B 30 plus 52 by 2 minus 20 plus 40

by 2, this is 11.
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* In some experiments, we may find that the difference in response between the levels
of one factor is not the same at all levels of the other factors.

* When this occurs, there is an interaction between the factors. For example, consider
the two-factor factorial experiment shown in Figure.

Factor A

(I'm*wﬂmmwwwnm |)
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So, once I can do this, then I have say the system like this which I am discussing and in

some experiment we may find that the difference in response between the level of one

factor is not the same at all levels of other factors. So, when this occurs you will say that

there is something else and this something else is basically called the interaction between

the factor.

So, for example you consider a two factor factorial experiment and here I am trying to

capture the effect of interaction also. So, you have 20 40 50 and there is something which

is 12. So, here I have a suspicion, I have a doubt that these two factors are interacting

with each other.
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Basic Definitions and Principles
* At the low level of factor B (or B'), the A effect is A = 50-20 = 30

« and at the high level of factor B (or B7), the A effect is A= 12-40 = 28

* Because the effect of A depends on the level chosen for factor B, we see that

there is interaction between A and 8.

* The magnitude of the interaction effect is the average d.-ﬁerenc.'.’_ in_

— — —— _—

* these two A effects, or AB (-28 - 30)/2= -29. Clearly, the interaction is large in

this experiment.

So, now when you are analysing such kind of case just try to see that when the low level
of factor B, that is B minus, the A effect is called 50 minus 20 30. So, we can just go
back and try to see what it is. So, 50 minus 20 that is 30, so, you have this 50 and you
have this 20, so, 50 minus 20 that is 30. So, now same way you have say level factor B
plus and the A effect is 12 minus 40 that is minus 28. So, because effect of A depends on
the level chosen for factor B, we see that there is an interaction effect. It is a very
important conclusion that effect A depends on the level chosen of B. It means that there

is some interaction effect prevailing between A and B.

Now, magnitude of this interaction effect can be easily found by the average difference in
these two A effects or AB minus 28 minus 30 divided by 2, so, this will be minus 29. So,
this is the large interaction effect whether statistical this is significant or not, I cannot say
unless I do the ANOVA analysis, but at least I can say that yes, if I look at the values of
main effect and I look at the value of interaction effect, yes there is a significant or say

contributing interaction effect, large interaction effect present.
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A factorial experiment with interaction

* Following figure plots the response data in Figure “A two-factor factorial
experiment, with the response (y) shown at the corners” against factor A
for both levels of factor B.

* Note that the B and B* lines are approximately parallel, indicating a lack of
interaction between factors A and B.

Now, just see that when you have factorial experiment with interaction, then a two factor
of factorial experiment with a response y you can show it as let us say corners and this is
my response against factor A. So, against factor A when it is at low level, what is
happening in this? So, B plus and B minus and factor A is set at high level, then B plus

and B minus.

So, what is the response I am getting when I set factor A at minus low level and I have
the factor B at minus same way this thing. So, B minus and B plus lines are
approximately parallel indicating lack of interaction between A and B. So, I am just
trying to discuss another case that when you plot it and if you find these two lines
parallel, then its an indication that the interaction is not significantly present and it is a

lack of interaction situation.
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A factorial experiment without interaction

* Similarly, Following figure plots the response data in Figure “A two-factor factorial
experiment with interaction,

* Here we see that the B and B" lines are not parallel.

* This indicates an interaction between factors A and B.

* Two-factor interaction graphs such as these are frequently very useful in interpreting
significant interactions and in reporting results to non statistically trained personnel.

So, now let us see the different situation where you are trying to say that there is an
interaction, it means when you change the level of factor, yes there is a possibility that
your response will get reversed or there is an effect impact on the response. So, just try to
see what is happening. I have a factor A, this is set at low level and I am checking the
value of let us say B plus and then, when I change the factor A to higher level plus and

again [ am setting B plus then I have change in response.

Similar way, when I see this B minus and B minus for this yes there is change in
response and you can see that these two lines are not parallel. So, there is something
which is called interaction that is prevailing in the system. So, I cannot simply say that
suppose my factors are pressure and temperature, these two factors main factors are
independent of each other. There is pressure into temperature there is the interaction
effect that also prevails. So, this is the concept that we additionally include when we try

to analyse the factorial experiment.
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Basic Definitions and Principles

+ Suppose that both of our design factors are quantitative (such as
temperature, pressure, time, etc.).

+ Then a regression model representatlun pf the two-factor factorial
experiment could bewr nas— N\

1 Jj'ﬁzx ‘{'ﬁllx‘lj J
+ where y is the respnn?.’e th ﬂ’s\a[e, arameters/ whase values are to be

determined, x; is a variable that represents factor 4, x, is a variable that
represents factor B, and is a random error term.

+ The variables x; and x; are defined on a coded scale from 1 to 1 {the low and
high levels of A and B), and x,x, represents the interaction between x; and
xz.

And then my statistical model would look like this where y is equal to beta 0 that is the
intercept. You have beta 1 x 1 that captures the main effect, beta 2 x 2 that captures
another factor effect, main effect, beta 1 2 x 1 x 2 and you have epsilon that is your error

component. So, this is how my model will look like.
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Basic Definitions and Principles

+ For the experiment shown in Figure, we found the main effects of A and B to

be A=21 and B=11.

+ The estimates of fi; antgﬂf:are one-half th?value of the corresponding main
effect; therefore, fi; oy 10.5and f, —.' 7 55/

Now, let us try to go little bit deeper and investigate the values of the slope. So, what 1
will say that beta 1, this is the system I have already explained and beta 1 is basically
estimate beta 1 hat is 21 by 2 and beta 2 hat is 11 by 2. So, from where this 21 and 11 has



come you can just see I can just go back to help you.

So, you have computed this 21 and 11. So, this 21 is computed, this is minus; this is
minus when the factor a can be thought of as difference between the average response at
low level of A high level of A. So, this is the estimate of factor A, this is the estimate of
factor B. So, here when I am setting the regression model, this is x 1, this is x 2 and the

slope pertaining to this will be beta 1, this will be beta 2.

Now, the question comes that why I divide this by 2; divide this by 2. So, now let me go
back to the slide which we were discussing. So, now why do you divide this by 2 and
this by 2? So, its very simple. I move from low to high level. In between there could be 0
and hence, I am moving two steps. So, my average value will be 21 by 2, this is one unit;
this is one unit. So, I am you I am moving by two step. So, I am taking the say average of
this that is 21 by 2, this is 11 by 25.5. So, this is the simplest way, in fact not much

statistical approach.
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Basic Definitions and Principles

+ The interaction effect in Figure is AB=1, so the value of interaction
g q i 1
coefficient in the regression model is ff;, = ;=05

+ The parameter 3, is estimated by the average of all four responses, or fi; =
(20+40+30+52)/4=35.5... /

+ Therefore, the fitted regression model is

? =355+ 10‘511 + 5.5}'2 i U‘lexz

But I can estimate my beta 1 beta 2 and same way I can do it beta 1 2. So, in figure A, B
is equal to 1, so, I just divided by 1 by 2 and I have beta 0 that is the intercept. So, I have
this core at each corner and this is summation of these divided by 4. So, what I get here
is basically 35.5. So, my regression model would look like this 35.5 plus 10.5 x 1 plus
5.5,x 2 plus 0.5, x 1 into x 2.
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* Following figure presents graphical representations of this model.

* In Figure (a) we have a plot of the plane of y-values generated by the various
combinations of x1 and x2. This three dimensional graph is called a response surface
plot.

* Figure (b) shows the contour lines of constant response y in the x1, x2 plane.

* Notice that because the response surface is a plane, the contour plot contains parallel
straight lines.

So, now when I have this model what I can say that this model is typically can be plotted
as a response surface and you can see that your response surface is basically curved and
this curvature is mainly because of the interaction effect and this is your contour plot
which also says that you have the curvature when you try to plot your responses on x 1 x
2 and y. So, this is my factor 1, your factor A x 1 factor B x 2 and this is my response
when | am trying to put it, I get the curvature; I get the curvature and it is mainly because
interaction effect x 1 into x 2 is present. So, I will have a quadratic function, so, my

response function would be say curved in the nature.

(Refer Slide Time: 16:07)

Now suppose that the interaction contribution to this experiment was not
negligible;

+ that s, the coefficient 8, was not small.

* Following figure presents the response surface and contour plot for the model.

*+ §=3554+10.5x, +55x; + 8x,x,

* Notice that the significant interaction effect “twists” the plane in Figure a (in the
next slide).

* This twisting of the response surface results in curved contour lines of constant
response in the x1, x2 plane, as shown in Figure b {in the next slide).

* Thus, interaction is a form of curvature in the underlying response surface
model for the experiment.



So, when interaction effect is present, you will see that your response function will be

curved.
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And this basically indicates the interaction effect. So, this is what exactly; now the

advantages of factorial that it helps me to analyse the interaction.
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* Suppose we have two factors A and B, each at two levels. We denote the levels of the
factors by A, A%, B;, and B*.

* Information on both factors could be obtained by varying the factors one at a time, as
shown in Figure.

* The effect of changing factor A is given by A'B" - A'B, and the effect of changing factor B is
givenby AB" AR,

* Because experimental error is present, it is desirable to take two observations, say, at each

treatment combination and estimate the effects of the factors using average responses.
Thus, a total of six observations are required.

j ar /-__/":*_x
Q? i / | One Factor- at-a- 5/
/
~

Time (QFAT)

experiment /

=
A

.eaen

Now, you just see in order to appreciate this you just see this is one factor at a time
experimentation strategy. So, one factor at a time means suppose I have factor A and B

and both the factors are set initially at low level. Now, I am changing factor A to



positive, I will not change the level of factor B. It will be set at the initial condition. So, I
will call this as the initial condition IC let us say initial condition and when I will change
factor B positive, I will keep A as the initial condition. So, I will not have plus plus

means both set at plus and n that is why this particular point is missing.

So, when I conduct the experiment one factor at a time, I am missing this particular say
point and this is the additional information I get when I conduct the factorial
experimentation when I am allowing the factors to be changed simultaneously and there

is nothing like setting or keeping a particular factor constant at the initial condition.
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Ilustrative Example: The Two-
Factor Factorial Design

So, this is what exactly we have to appreciate about the factorial experiment compared to
the one factor at a time, I do not say one factor at a time is an inferior strategy. That is
that is a good strategy in some of the conditions when you feel that simultaneous
changing of the factor or the interaction effect are not really our interest of importance
and we just want to be happy with the one factor change at a time. Now, let us try to see

some illustrative example of two factor factorial design.
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pR e guste s
+ Because there are two factors at three levels, this design is sometimes called a 32 factorial design.

+ Four batteries are tested at each combination of plate material and temperature, and all 36 tests are run in
random order.

+ In this problem the engineer wants to answer the following questions:
1, What effects do material type and temperature have on the life of the battery?
2. s there a choice of material that would give uniformly long life regardless of temperature?

Fd
Uife (in Nurs) Datafor the Battery Design Example”

Material — Temperature (F) .
Wi .f‘“\l\ls E,_ L) [ )
Iff N e\ TTs ) | [ » w— n
\_/ W= | W 7 8 5

150 13 122 5 0
106 15 58 45
174 120 5 10

B2

So, my design is like this. I have the temperature setting and let us say 15 70 125, I have
the material type 1, 2 and 3 and this is typically the problem referring from Douglas
Montgomery design of experiment, life data of the battery design example. So, these are
the life data may be in hours, here it is hours. So, [ want to see that suppose I am using a
particular material and suppose there is a particular temperature, then will it have an

impact on the life of the battery.

So, you are using battery in automobile and many other say appliances vehicles. So, now
we have battery operated vehicles also. So, this is a very important problem that the
temperature at which the battery is getting exposed and the material you have used really

it has some impact on the life of the battery or not. So, this is what [ am trying to analyse.
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* |n general, a two-factor factorial experiment will appear as in follow Table: General
Arrangement for a Two-Factor Factorial Design

J/ V.

— __1_ = 2—’—"_'“ " _b—-_—-.
V{ ;;1-3'11::---}'11»1 121-}'1221:}’.12: /Ylnd"loz-w}'ly/l

Factor ;}_ 2 | Ve Fiiders | YauViz -Yam Yab. Yiia o Yabn
i e

o LYarn Yarz, - Yaun | Yazu Yazz Yz (Y Yotz Yoo

So, now let us try to appreciate the basic structure of the problem. So, my structure is
like this; you can see that I have some readings in a particular block and not block
particular cell rather. So, factor A and factor B, I am taking y ijk reading for each
particular cell and this is how my data is organised. So, we will see the example it would

be better, clear.
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* The order in which the abn observations are taken is selected at random so that
this design is a completely randomized design.

* The observations in a factorial experiment can be described by a model. There are
several ways to write the model for a factorial experiment. The effects model is

i=12,.
' 'yUk "@Ti tﬁr wj\tﬁ;k = 1122

Where

* j=overall mean

+ 1; = effect of the ith level of the row factor A\/

* By =effectof the jth level of the column factor B, .
+ (tf)y; = ef fectof the interaction \iyyeen T and f; \/

* €;jx=random error component

But before that let me try to understand my model, what is my factorial design model?

So, my model looks like this y i jk this is the effect model I am trying to analyse the



effect, y 1 jk is the response. So, i pertains to your particular factor and j pertains to your
another factor, you have temperature as well as you have material type and k you are
referring to a particular say cell because within a cell you are taking number of replicates

and in order to improve the accuracy of your experimentation.

So, mu is the overall mean, tau i is the effect of the level of the row factor A, then beta j
is the effect of the jth level of the column factor B tau, beta i j is the effect of the
interaction between tau i and beta j and this is your random error component that is

epsilon 1 jk.
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* Another possible model for a factorial experiment is the means model

1= il
YVijk = Wij + €ijg 1/ =12
k=120 an

* where the mean of the ijthcellis =~ ==
;z'p‘u / If/ :
Hij = H 'i‘ t‘.-"IT 15‘;#‘# (tf); /

* In the two-factor factorial, both row and column factors (or treatments), A

and B, are of equal interest. Specifically, we are interested in testing
hypotheses about the equality of row treatment effects, say

—— e

Hpti=13=-=1,=0

Hy:at least one 1; # 0

So, when you appreciate this basic model what I say that y i1 jk basically is the mean
specific to i1 and j plus epsilon i jk and mu ij. The way its represented in a statistical
mathematical term mu plus there is tau i effect, row effect, column effect, interaction
effect and I can have a null hypothesis that tau 1 is equal to 0 means tau 1 is equal to tau 2
is equal to tau a is equal to 0 and I can say that at least one of the treatment tau a or tau i

is not equal to 0.



(Refer Slide Time: 22:04)

* The equality of column treatment effects, say

; Hoypy=Pp==p=0

| Hy:at least one f; # 0

* We are also interested in determining whether row and column treatments
interact. Thus, we also wish to test

( Hy: (zf)y; = 0 for alli,j
Hi:at least one(tf);; # 0

* We now discuss how these hypotheses are tested using a two-factor analysis
of variance.

So, now I think you are familiarise with such kind of treatment because you have two
factors row and column. Similar way you can set the null hypothesis alternate for the
column factor, similar way you can set the null and alternate hypothesis for the
interaction and this will basically help you to investigate the two main effects and the

interaction effect.
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. jét y;. denote the total of all observations under the ith level of factor A. /
N/ 5

-~
\*'\X ; denote the total of all observations under the jth level of factor 8,]
7{, Denote the total of all observations in the ijth cell, and 1\/
P
'f denote the grand total of all the observations. \/
* Define §; Vi Fij. andry as the corresponding row, column, %eil, and grand

7

EVETEIgES.

So, statistical analysis of the model is like this you have yi triple dot basically denote the

total of all the observations. You take the summation under the ith level of factor A, you



have y dot j dot denote the total of all the observations under jth level of factor B, you
have y i1 j dot denote the total of all the observation in say particularly i jth cell and y

triple dot denote the grand total of all the observations.

So, these are the mean values corresponding mean values yi dot refers to row y j dot

refers to column yi j dot bar refers to cell and then, you have the grand averages.
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* Expressed mathematically,

/ b yn S R i
i = Lj=1 Zk=1Yijk = i=12,....a
"
ol
=) :
‘(A'.j. =T Zh=1 Vijk V=) j=12,....h
J - y . . .
;'y”' = E;C!=l Yijk Yij. = —:3' 2 el 5 il o =
Y

\/}‘ =Zf=]z?:lz£:1qu ? =)’_

So, these are the values you need to compute and then you can say find the total of y 1
double dot y dot j dot using this expression y ij dot and y triple dot and this is the
averages of each particular y 1 double dot bar y dot j dot bar y ij dot bar and this. So, |

hope now we are comfortable because we have done this many times.
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And now I want to basically find the sum of square. So, my approach will remain same, I
will try to minimise the error component and I am checking the expression that y i jk
minus y bar triple dot. So, I am trying to take the difference between individual value and
the grand mean and square it. So, that will help me to find the total sum of square what is
the total variability in my data and when I just expand this expression, then I will end up

with say this, this and this.

So, basically you have number 1 and this expansion then when you expanded, you have
number 1 component, number 2 component and number 3 component. So, you can very
well understand that you have basically say this is number 1, this is number 2. T will
rewrite this is your basically say rearrangement of the terms you have number 1, number
2, number 3 and number 4. So, you have derived total four components out of these and
these four components are basically nothing you have the row effect factor one effect,
second you have the column j is equal to 1 to b and you have say interaction effect and

you have the error component.
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* From the last component on the right-hand side of Equation, we see that there
must be at least two replicates (n = 2) to abtain an error sum of squares,

* We may write Equation symbolically as
557 = 55 + 5 + 5505 +55 /.

* The number of degrees of freedom associated with each sum of squares is

4 _\f
B 1;1]

ﬁﬁ‘interact:’on (a-1)(b-1) h/
Error ab(n-1) \/
Total abn=1

So, this is what you basically try to do. So, I have the expression like SS T is equal to SS
A plus SS B plus SS AB plus SS E and these are the corresponding say degree of

freedom.
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* Each sum of squares divided by its degrees of freedom is a mean square. The
expected values of the mean squares are

) ; e
: L] LR |
" i
58 i ,\;Z(”‘ ). ]
E(MS ;)= .‘[ 12 ] b ~ |
{a =1)(b=1)
and

E(MS, )= ;:'[ 5% } al

\ ab(n=1) )

So, once you have done this, then you can compute the degree of freedom and you can
also estimate the mean square error just by including the treatment effect to the
population, variance population variance and this will help you to appreciate the basic

logic behind the ANOVA analysis.
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ANOVA for a Randomized Complete Block Design

Source of Sum of Degree of Mosnsqimres’ | Fy vakon
variation squares fr#M P —
M.
Atreatment //.;S,\\ / a-1 \ £ /Ff =—SA
é» 1 a-1 \ zga
' SSg Y|
ttt/SS\ p-t Y| 2 e
L/ ?amen ! B _J/ | r/ BT f{l' 0= N5,
nteraction | $5i5 [u—l)(b—l)[ f(a—ﬁ?i—ll { po=% /
1
| sy / \
b(n-1
ooy | |\ g/ N
abn - 1/

So, now if I look at my ANOVA table, then I have A treatment B treatment interaction
error and total I have all the sum of square, [ have degree of freedom, I have mean square
and I can find the F 0 values. So, once you have done this, then its very easy to analyse

the significance of treatment A treatment B and interaction.
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* Computing formulas in terms of row, column, and cell totals can also be used. The
total sum of squares is computed as usual by

* The sums of squares for the main EHE

l/ﬂ

And then you can use easily this expressions SS T, SS A here. It is with respect to grand
mean square and because this is your row effect, so i is equal to 1 to a j is equal to 1 to b

column effect and you can easily find this value. So, interaction effect in error.
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* This sum of squares also contains 55, and 55;. Therefore, the second step is to
compute 55,5 as

S8 = SSsubtotats = 551 = SSs

* We may compute S5; by subtraction as
SSE = SST -SSAH = SSA = SSB
S8 = 881 = SSqutotals
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lustrative Example:
Battery Design Experiment
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Table presents the effective life (in hours) observed in the battery design example. The row and
column totals are shown in the margins of the table, and the circled numbers are the cell totals.

Lifa Data (in hours) for the Battery Design Experiment
Material 7\ Temperature (F) -~

W Tal T Tu )
O EERE A as,| 0 [0 [0 (993/
n |10/ \80 | 75/ 8 | 8
@ 150 1188 Qza/ 136 | 122 | 49 | 25 | 70 [198 Clzy
<106 [ 115 | ¥ 2
{36\ 174 | 120 | 583 | 96 | 104 |34 lem/
0[] /[ K| /|~~~
3799 =y

So, now if you go back to our battery design experiment, this is the data and what you
can see here that there is a factor called temperature, there is a factor called material type
and you have the four readings in each particular cell. This is the total of all the four
readings, total of all the four readings, total of all the four readings and same way this is
the total of all the and this is the total of all the four readings and this is the total of my
particular row and this is the total of my particular column. So, this is what exactly you

can do.
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* Using the Equations mentioned previously, the sums of squares are computed as follows:

% _ElJE\;g!u flbn \/
=(130)" + (155 4 (70) +.....#(60) - ”?f” =77,646.97

5§ 2
Nl b:rz, u!w \/
1

o [(993) +(1300) +(|501)] ( =10,683.72

55, =—
cmz r.-bn /
1 (3799)°
——[[I?%S]ﬂl?ﬂl] m]‘]-%:mus.n

()4




Now, you have the expression. So, just plug in the values you will get SS T, SS material,
then you have SS B that is the your temperature that is the another factor and when you

do this you have SS interaction.
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i I s }’J T ..
R =;ZZ 3= S =5,

t=l f=l

(3799)’

] [[539]3 +(229) +......(342}3}—T ~10,683.72-39,118.72=913.78

4
and
88 =857 = 85t =SSt =S pircn

85, =77,646.97-10,683.72-39,118.72-9613,78=18,230.75
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ANOVA for Variance for Battery Life Data
:::T;:: ::::r:: D;::: Mean squares | F, Value | PValue
Material Type | 10,683.72 2 5,341.86 781 | 0.0020 ?
Temperature | 39,118.72 2 19,559.36 28.97 | <0.0001v /
Interaction | 9,613.78 4 2,403.44 3.56 000186/
Error 18,230.75 27 675.21
Total 77,646.97

cmen

So, typically you will have the results like this. So, what you get here is basically the P
value for material type its 0.002. This is quite less than 0.001. So, you can say it is 0.00
this is your interaction effect. So, by referring these three, you can say that if I am

checking at level alpha is equal to 0.05 all these are falling in the rejection region. So,



my null hypothesis that there is no main effect A, there is no main effect B, there is no
interaction effect is rejected and hence, there is a significant impact of temperature on the
battery life, there is a significant impact of material on the battery life and interaction

effect is also significant in terms of battery life.
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* Before the conclusions from the ANOVA are adopted, the adequacy of the underlying

model should be checked. As before, the primary diagnostic tool is residual analysis.
* The residuals for the two-factor factorial model with interaction are
ek = Yijk = Jipe \

4

* and because the fitted value Ji;, = J;,, Equation becomES/"

Gk = Vi = Vij.

You can check the model adequacy as usual by having the residual component.
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* The residuals from the battery life are shown in Table.

Temperature (F)
Material Type 15 70 125

1 475 | 2025 | -23.75 | -17.25 | -37.50 | 1250
-60.75 | 4525 | 2275 | 17.75 | 2450 | 050

2 575 | 3225 | 1625 | 225 | -2450 | 2050

325 | 2975 | <1375 | 475 8.50 -4.50

3 600 | -3400 | 2825 | -25.75 | 1050 | 1850

1600 | 425

And you can find the residual for each particular material by subtracting it from the

grand mean.
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L B A
* The normal probability plot of these residuals (Figure a) does not reveal anything
particularly troublesome, although the largest negative residual (-60.75 at 15°F for material
type 1) does stand out somewhat from the others.

* Figure b plots the residuals versus the fitted values ;.
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Normal probability plot of residuals Plot of reslduaT(\‘rlersus Pk

And you can plot it. So, more or less this is going through the line and you have the
normality assumption varied say valid and this is when you plot, you can see the

scattered net. So, there is an independence which is also verified.
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R B R A S R
* Figures (a) and (b) plot the residuals versus material types arid temperature, respectively.

* Both plots indicate mild inequality of variance, with the treatment combination of 15°F
and material type 1 possibly having larger variance than the others.
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Figure (b): Plot of residuals versus

Figure a) Plotof resduals versus material |

Now, these are the plots that shows the individual variability for a particular material
type. So, more or less there is nothing great to say observe more or less the variability is

there, not that too less too high and we can comfortable with the equal variance also.
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. Why factorial designed is preferred over One factor at a time
(OFAT)?
2. How do you check the adequacy of your factorial analysis?

3. What are the key disadvantages with factorial experiments?

So, now with this let me plot couple of thing for your understanding, for your
introspection. Why factorial design is prepared over one factorial at a time OFAT? How
do you check the adequacy of your factorial analysis and what are the key advantages
with factorial experiments? So, please try to go through the concepts covered in this
particular lecture and this will really help you to understand the concept of factorial

design and how it helps us to analyse the factors.

Simultaneously consider the interaction effect and basically it is all about revealing more
information about the factors and their interaction effects, so that I can design my
processes product with greater accuracy and that can help me to have robust product and

design when it will be delivered to the customer.
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O Montgomery, D C. Design and Analysis of Experiments,
Wiley.
O Mitra, Amitava. Fundamentals of Quality Control and
ﬁe/é ren Cej Impravement, Wiley India Pvt Ltd.
O T. M. Kubiak, Donald W. Benbow, The Certified Six Sigma
Black Belt Handbook, Pearson Publication.

U Forrest W. Breyfogle IIl, Implementing Six Sigma, John Wiley
& Sons, INC.
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So, I am mainly referring Montgomery, D. C you can also refer this particular book.
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PPRV AT SO BD

+ A full factorial experiment is an experiment whose
design consists of two or more factors, each with
discrete  possible  values or "levels", and
whose experimental units take on all possible
combinations of these levels across all such factors.

+ A full factorial design may also be called a fully
crossed design.

+ Such an experiment allows the investigator to study

the effect of each factor on the response variable, as

well as the effects of interactions between factors on
the response variable.

And conclusion is that a full factorial or factorial experiment is an experiment whose
design consists of two or more factors which with discrete possible values or levels and
experimental units take on all possible combination of these level across all such factors.
So, this is called fully crossed design and this helps investigator to study the effect of

each factor on response as well as the interaction effect.

So, thank you very much for your interest in learning this particular session and you



would really be benefited if you solve a couple of example or you collect some real life
data and conduct the experimentation, then you would be able to internalise this concept.
So, we will advance in our say DMAIC cycle typically, right now, we are discussing the
improved phase of DMAIC cycle. We will advance in this and then, you will have the

better filling about the complete phase. So, keep revising. Be with me, enjoy.



