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In our course Selected Topics in Decision Modeling, we are now in our 39th lecture that

is multi objective optimization. Now, so far we have seen various problems with multi

heuristic use starting from genetic algorithms and several other techniques, but we have

not  explicitly  considered  a  multi  objective  optimization  using  multi  meta  heuristic

methods. Now, multi objective optimization usually there will be several or a number of

objective functions; the distinctness will be that they will be measured in different time

units and often they would be competing and conflicting even.

Say for example, if you have to simultaneously minimize the time as well as the cost, so

you may often find that while time is minimized the cost is not. And when you try to

minimize cost,  time is  not minimized.  So, under those situations,  you know you are

going to get a set of solutions, which can be called optimal in some sense because one

optimal  solution may not be available  right.  And all  these a set  of optimal  solutions

which cannot be considered to be better than one another with respect to all objectives.

With respect to one objective we may find a particular solution to be optimal, but with



regard to another objective we may find another solution to be optimal. So, what we shall

do, we shall call all of these solutions as Pareto-optimal solutions, but then there is more

to it there is a specific definition we shall come to it in due course of time.
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Now, multi objective optimization in a general sense, it can be thought of as and you

know optimization problem where we are minimizing or maximizing a set of objective

functions f i x subject to some constraints which are equality constraints g k x equal to 0,

where k varies from 1 to large K. And h l x less than equal to 0 where let say that l

depend l varies from 1 to large L. And N obj is the number of objectives. 

So, you see this could be in the most general form set of objective functions which could

be  minimize  or  maximize,  and  there  are  both  equality  and  less  than  equal  to  0

constraints, is alright, so that is the general form of multi objective optimization problem.
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So, as I said the objective functions may be conflicting with one another. And if you

want to simplify the solution process, sometimes what happens you can you know treat

some of the objective functions as constraints, but then you know treating function as

objective function and treating or converting it to a constraint is not exactly same thing.

So, you know the solution obtain will be may be satisfying those constraints, but cannot

be called as optimal with respect to all of these objective functions, is it alright.
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So, how do we carry out the multi objective optimization that we shall come little later;

first let us understand: what is the basic concept of Pareto-optimality. Let us assume that

we  have  a  set  of  feasible  solutions  is  it  all  right.  And  they  are  different  objective

functions  a  set  of  different  objective  functions,  the  first  concept  that  what  is  Pareto

improvement right. So, if I take two such feasible solutions, then Pareto what you call

improvement can be defined in these way that at least 1 objective function is returning a

better value with no other objective function becoming worse off, is it all right.

So, supposing we have two feasible solutions with regard to one objective function, the

first one is better; but with respect to any other objective function, the first one is not any

you know worse off than the others. So, we may say that going for the first one instead of

the others is a kind of Pareto improvement is all right. Now, consider you are doing

Pareto improvement and finally, you are left with a set of feasible solutions where no

further Pareto improvement  can be made, then those set of feasible  solutions can be

called as the Pareto efficient  or Pareto-optimal  solutions is alright,  so that  is how to

define Pareto-optimality.
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So, here you can see that the solutions along the line. So, you see if you if you just look

at these particular plot, then you may find that in this plot there are a series of solutions

all of them are feasible solutions is alright. And out of all those feasible solutions, if I

find the solutions on the boundary is it not, you know these are the obtained solutions



usually they constitute a Pareto-optimal front. And the solutions on the Pareto-optimal

front are usually Pareto-optimal.

But then the Pareto-optimal front shape need not be same all the time you know there

could be different shapes. For example, you know here the shapes are different is it not.

There would be different shapes, but suppose when the shapes are different you know

you may have difficulty in interpreting the solutions. So, all these things are there and the

solutions  which  are  not  on  the  Pareto  front,  you  can  say  that  those  are  dominated

solutions  right.  The  dominated  solutions  usually  will  be  inside  the  line  because  if  I

compare a solution on the optimal front you know you may find that that there is at least

one solution which will be better than the solution which is you know better than the

solution which is inside.

So, let us see, what exactly we are talking about. Suppose this is a point A, which is a

solution, which is inside. Now, with regard to f 1, in these direction, and f 2, these are the

values right. Now, you can see, at least one solution. Suppose let us take these point, call

it B. The B is definitely better than A, with regard to both the objectives. So, we can say

that  B dominates  A right.  So,  A e becomes dominated solutions,  and because A is  a

dominated solution, it cannot be part of the Pareto-optimal front. 

So, in that sense, all the solutions which will form our Pareto-optimal solution, they can

be called as non-dominated is it all right. And it should be important to find solutions as

close as possible to the Pareto front, and as far along it as possible is it alright, so that is

the basic idea of the Pareto-optimality. But it will be more clear, if we take an example.
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ah Let us look at these particular example. Suppose, there are 9 different options in front

of us to buy air tickets right, which are A to I. Now, in each option, you know if we

travel, it takes certain hours of time, and certain 1000 of rupees of cost. For example, if

you go by the ticket type A, then it will take 2 hours to travel, but cost will be 7500

rupees is it alright. And our objective function is to minimize cost and minimize time,

both at the same time.

So, let us take three solutions. Three solutions all are feasible, let us call them A, B, and

C  right.  So,  supposing  we  consider  A,  B,  and  C  these  three  solutions,  which  are

highlighted in red, and a let us compare them. Compare A with B, does A dominate B.

Look at carefully, A win with regard to time, you know A takes 2 hours, but B takes 3

hours, so which one is better, A is better. With regard to cost again, you know which one

is better, B is better. So, you can see that you cannot say that A is better than B, in all

respects, A is better than B in time, but B is better than A in cost.

But, if you compare A with C, very interesting thing found that A is better in time, A is

not worse off in cost. So, you can say then A dominate C. Compare B with C, B and C,

you know B is equal in time with C, but cost is less. So, in that sense, you know also say,

B dominate C is it all right. So, what about A and B, you can say that A and B, they form

a non-dominated set is it all right. So, in that sense, A and B will be candidates for the

Pareto-optimal solution is it all right. So, these are some of the things, which you know



we should understand very clearly to have our understanding of the solutions for multi-

objective optimization.

(Refer Slide Time: 11:43)

Now, moving further, you can see that A dominate C that is fine, A dominate C. But, A

does not dominate any other, because A is the lowest in time that is fine, but cost also it

is probably the highest. So, C it dominates, because C cost is also 7.5, but every other

feasible solution has a lower cost. So, A does not dominate any other, but A dominate C.

The B dominates C, B dominates E is it all right, B dominates E, and B dominates G, and

B dominates H, and B dominates I right. D dominates E, D dominates G, D dominates H,

and D dominates I. Why, because look here, D is 4 5, and you know all those other ones

that is E, the time you know when it comes to D between D and E, you can see both are

same time, but cost is lower in D. And with regard to the G, H, I, D is better in both

respects right

Similarly, F, G, H, I, if I compare, the F you know is equal to G in time, but better in

cost. And F and H again time is same, but cost is less in F. And F is better than I in both

time and cost is it alright. So, this is about the dominates. So, but then, the remaining

ones that is A, B, D, and F, if you compare them in pairs, you know interesting thing that

we shall find is that no clear winner can be found, no clear winner is it alright.

So, if I see A and B, we find that you know no clear winner. If you see A and D, again D

is better in cost, A is better in time. A and F again, you know similar kind of thing. So,



we find that A, B, D, F, they form a non-dominated set. And therefore, our conclusion

could be A, B, D, and F, they will form a Pareto-optimal front or a non-dominated front,

and they will be our Pareto-optimal solution is it alright. So, they will together form a set

of Pareto-optimal solution right.
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Now, further, if we plot them. Now, look here if we plot all of these A, B, C, D, E, F, G,

H, I, then clearly can you see that while all the solutions are here, this is all the solutions.

Now, out of all the solutions, this A, B, D, F you know they are in the Pareto-optimal

front  or  the  non-dominated  front  is  it  alright.  And  interesting  thing  could  be  on  a

graphical way that you know if I draw a 90 degree line on the curve, a 90 degree tangent.

So, supposing these are all the set of solutions. So, these are all the set of solutions, and

these are my axis.  And if  I  draw a 90 degree tangent  right,  a 90 degree tangent,  so

something like it will just touch here. So, you know it will be somewhere here, it won’t

go any beyond, because then you know the slope changes. So, slope should be within

these, so somewhere here, so that portion can be the Pareto-optimal solutions.

Anyway it will not be possible to do through geometry, because particularly if these are

the cases, where only two sets of solutions are there objective functions, but there could

be multiple objective functions, instead of simple time and cost. So, here it is only time

and cost. But, suppose it is 3rd dimension, then it will be a 3-D figure right, or there

could be 4th dimensions, 5th dimensions etcetera.



So, we have to have a kind of methods, which can be called as non-dominated sorting.

So, what is non-dominated sorting, we shall see a little later. So, we have understood that

how  exactly  we  find  the  non-dominated  set,  and  how  do  I  find  the  Pareto-optimal

solutions. So, with that knowledge let us go further.
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And let us see what are the some methods by which we can do the you know solve multi

optimization problem through meta heuristic techniques. So, we can do, what is known

as  the  evolutionary  optimization  techniques.  The  evolutionary  optimization  kind  of

methods,  there  are  several  methods  we  have  already  studied  starting  from  genetic

algorithm to simulated annealing to the, you know the PSO methods, and all that all of

them in a short can be called as evolutionary algorithms.

So,  evolutionary  algorithms  are  capable  to  find  the  several  members  of  the  Pareto-

optimal set in a single run right. And there also less acceptable to the shape or continuity,

it is a convex or concave, and it handles the concave once or discontinuous one very

nicely.  And  there  are  both  Non-Pareto  and  Pareto  methods  for  multi-objective

optimization using evolutionary optimization techniques right.
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The Non-Pareto methods they do not incorporate directly the concept of Pareto optimum.

And therefore, it can produced cannot produce certain portions of Pareto front right. Easy

to implement, but cannot handle large number of objectives.

The Pareto techniques on the other hand, initiated by Goldberg; Goldberg has got a you

know he was a direct student of Holland, who first talks about the genetic algorithm or

meta heuristic techniques. And Goldberg his book on genetic algorithm is also very very

famous to solve the multi-objective problems using the Pareto techniques. So, usually it

uses non-dominated ranking and selection to move the population towards the Pareto

front right. And the two procedures are followed, one is a ranking procedure, and another

is  a  technique  to  maintain  diversity  right.  So,  these  are  the  two techniques  that  are

followed.
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So, here are some Non-Pareto techniques, aggregating approaches, vector evaluated GA,

lexicographic ordering, e-constant method, and target vector approaches. And some of

the  Pareto  techniques  include  the  multi-objective  GA,  non-dominated  sorting  GA,

particularly  NSGA-II  that  we  shall  discuss  that  is  why  it  is  highlighted,  then  multi

objective PSO, Pareto evolution archive strategy, strength Pareto evolutionary algorithm

is all right. So, these are some of the Pareto techniques that we shall have.
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Now, specifically we are going to discuss what is known as the non-dominated sorting

genetic algorithm II or the NSGA-II. In the subsequent lecture, we shall give an example.

But, here also I shall take a simple example, the in fact the example that we have already

taken, how exactly the NSGA-II the broad idea is can be explained through that simple

example.

Now, (Refer Time: 20:19) or Deb et al, there are other authors, he proposed these NSGA-

II, in the year 2000 that paper. In that you know specifically if you see the NSGA-II or

the non-dominated sorting are the name suggests, it emphasizes non-dominated sorting

emphasizes  the  diversity  preserving  mechanism.  If  you  recall,  you  know  while

discussing meta heuristics, I have specifically told that any meta heuristic method has to

have  two things,  one  is  there  should  be  selection  pressure,  and there  should  be  the

population diversity.

The  selection  pressure,  so  that  the  best  chromosomes  are  selected.  The  population

diversity, see to it  that the entire portion of the population is well represented.  Why,

because so that search can be really multi pointed. Why, otherwise there is a chance of

you  know localizing  or  ending  up  at  a  local  optimum solution.  It  does  a  crowding

comparison; we will explain it later, in order to achieve this. And finally, it also uses the

elitist principle; some of the parents go directly into the next generation based on above-

mentioned conditions.

So, exactly how NSGA-II is applied, the exact method of meta heuristics, specifically the

elitism and others can be understood in the next lecture. But, in this particular lecture, we

shall  specifically  try  to  understand  the  non-dominated  sorting,  and  the  diversity

preserving  through  the  crowding  comparison,  or  crowding  calculations  crowding

distance calculation.
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So,  what  is  non  dominated  sorting.  See  the  non-dominated  sorting  very  important

example is that we have already seen in these particular example of you know choosing

air tickets with minimum cost and minimum time, we had those options. And from those

options of time and cost, we have seen earlier that the A, then B, then D, and F, they have

together, they form the Pareto front is it alright. So, we call them you know the line that

we get by joining them as the non-dominated front 1 right. And we use non dominated

rank, so maybe we can say that this A, B, D, F, they are non-dominated rank is 1 right.

So, I call it, non-dominated front 1.

Now, leave out A, B, D, F, so we have the five left C, E, G, H, I right. Suppose we do the

same procedure  once again  right,  C,  E,  then G,  and H,  I  you see that  if  I  compare

between C and E, you know they do not dominate each other, again C and G; they do not

dominate  each  other.  But,  then  they  dominate  over  H and  I,  at  least  some of  them

dominate over H and I. So, H and I goes out, and C, E, G again forms a non-dominated

front leaving out A, B, D, F is it alright. So, they will be now our non-dominated front 2,

which therefore, their rank will be at this stage will be the rank will be 2 right. So, at this

stage, their rank will be 2.

Now, leaving them, the last two that is H and I, again you see you know they do not

dominate over each other. So, they front the non-dominated front 3, they will be forming.



So, for them, the rank will be 3 right, so that is what we shall get. We have rank equal to

1 for A, B, D, F, rank equal 2 for C, E, G, and rank equal to 3 for H and I is it alright.

So, by non-dominated sorting, the method will be explained through an example in the

next lecture. But here we can see that A, B, D, F that the front 1, and their rank will be 1,

so that means, for you know going from one population to the next, A, B, D, F will have

first  priority, because they are of higher rank, rank 1.  And the C, E,  G will  be next

priority, their rank is 2. And H and I, their rank will be 3. So, this is the first thing that is

called the non-dominated sorting. And non-dominated sorting can be employed to really

find out the ranks of the solutions, non-dominated ranks of the solutions right, so that is

the first thing.
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So, now the same thing is explained here that given two solutions, i and j, solution i is

preferred to solutions j, if R i is less than R j, less here means that 1 is less than 2. So, all

those with non-dominated rank 1, there in the front the first front, they will be more

preferred than others whose ranks are higher, higher in the sense, rank 2, 3 etcetera. So,

solutions in non-dominated front 1 are ranked 1, and have the highest fitness. Solution in

the same front, have the same rank and same fitness. And a solution with lower non

dominated rank is preferred over others.

So, when two solutions have the same non dominated rank that is belong to the same

front, the one located in a less crowded region of the front is preferred. So, this is the



next question. Suppose I have to choose 3 out of ABDF, so which three should I choose

is it ok. Look here all of them are having the same rank, is it all right. So, the question is

they should be well represented. And how do I well represent them that means, we have

to ensure a population diversity. So, how do you ensure population diversity we should

try to get solutions from all regions of the you know front, so which basically means that

out of ABDF, suppose B and D are closed together then one of them should be ok. 

So, if suppose B and D are in a crowded region, their chances are reduced; whereas, any

particular solution which is in the less crowded region, they should be preferred, that is

the essential idea of the crowding comparison or obtaining what is known as a crowding

n distance.
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So,  two things  are  important  one is  convergence.  So, basically  obtaining  the Pareto-

optimal front;  And second is diversity;  see that the solutions are representative of all

parts of the population and that is done by looking at the crowding distance. And more

the  crowding  distance,  more  the  solution  is  likely  to  be  retained  for  diversity

preservation.
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So, how do we calculate the crowding, the crowding can be calculate as calculated as

you know this way that  is  that  the for every objective  function,  so f  is  an objective

function value the f m x i plus 1. So, this is the crowding distance for i right. So, the

suppose we sort them according to the objective function,  then what is the crowding

distance of i. 

Look at the two nearby ones that is i plus 1 and i minus i plus 1. So, the difference of the

objective function value f m x i plus 1 minus f m x minus 1 divided by the highest

function value minus the lowest function value this is with regard to one objective. And

then sum over all objectives, is it all right. So, more the crowding distance more is likely

to be retained, so that is how the crowding distance is calculated. What is exactly it is we

will understand through an example.
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So, let us see that particular example that is the same problem that we have taken. Say

these are the four ABDF, and we have to find out their crowding distances according to

the formula. So, look here with regard to the time, what is the minimum and maximum.

So, you see with regard to the time maximum is 6 and minimum is 2. With regard to the

cost maximum is 7.5, and minimum is 4.5. Now, the crowding distance of A B D F, now

we know that the crowding distance of A will be infinity. Why, because you see A has no

neighbor on the other  side is  it  all  right.  So,  since there is  those extreme you know

feasible solution, for them we assign a crowding distance of infinity. So, in that sense A

and F will have infinite crowding distances.

What about B, the B the neighbors are A and D so, look here A and D the values are 4

and 2. So, 4 minus 2 minus 6 minus 2, those are the maximum values plus you know for

all objective this is for one objective that is time. And with regard to cost, what it is, the

7.5 minus 4.5 that is the denominator and then numerator will be that value of A and D,

so 7.5 minus 5. So, you see these are the values to compare. So, 2 and 4 and 7.5 and 5 to

be obtained for B, is all right. So, 4 minus 2, 6 minus 2, 7.5 minus 5 by 7.5 minus 4.5, so

it comes to 1.33 that is the crowding distance for B.

And what is the crowding distance for D. For D the values the neighbors are B and F. So,

5 minus 3 and 6 minus 4.5 divided by the extreme values; so, it becomes 1, is it all right.

So, now suppose we have to choose any three, which three should we choose; obviously,



A because it is infinity; obviously, F because it is infinity. And out of B and D, which one

is higher; it should be B because the crowding distance is higher that means, the B is in a

less crowded region, is it alright. So, that is how the crowding distance is to be brought

into for making a choice of the solution which will go from one generation to the other

generation right. So, that is how you know we understood certain part of the Pareto-

optimality and then basic idea of the NSGA-2, is it alright.

So, with that we will stop here.

Thank you for your patient hearing.


