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So, in our subjects Selected Topics in Decision Modeling, we are now in 36th lecture that

is simulated annealing. Simulated annealing, as you can see you know it is a random

search  method  developed  by  Kirkpatrick  and  others  in  1983  based  on  the  physical

annealing  process.  And  highly  compared  to  hill  climbing,  only  thing  it  also  allows

downwards  steps  or  transitions  to  weaker  solutions  and  through  a  series  of  random

moves.
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Now, how it happens, look here in this case you see a function has got multiple peaks

and traps. So, we have a global maximum, there could be a local maximum also. If you

start the search from a random point A, obviously you move up the global maximum that

is the usual hill climbing method where with, every iteration we try to go to a higher

value  and discard  any value  that  goes  lower. And but  then in  hill  climbing method,

typical  hill  climbing  method,  if  you  start  from  random  point  B,  then  through  hill

climbing you do not lead to the global maximum you lead to a local maximum right that

is a peak point definitely, but not the best possible peak.

But assume supposing at random point B, if you are allowed a downward movement and

if you go let us say to a point say here right. So, what is possible then you can do hill

climbing  and you can reach to  the global  maximum.  So,  this  is  essentially  done by

simulated annealing. What is done you know first high temperature is assumed. So, as if

you know you reach you raise the entire thing to a very high temperature T which is a

very high temperature. Now, at a high temperature, function is used which is called the

metropolis function, metropolis function. This metropolis function is such that it actually

has got a very high probability rather high probability to you know accept a point which

is you know downhill.

So, the point is look here suppose in an iteration you know it is a minimization problem,

it  is  a  minimization  problem.  So,  in  a  minimization  problem,  you know we have a



function value f x 1 in the subsequent iteration we got a new point x 2 from x 1; and I got

a point x 2 the value is f x 2. So, see what has happened in before iteration, I had x 1

function  value  f  x  1.  After  iteration,  I  got  x  2  function  value  f  x  2;  problem  is

minimization right.

So, if f x 2 is lower, there is no problem; everything is fine. It is a minimization, we are

moving towards the global minimum. Is it not? See, we are moving global or local we do

not know, we are really moving lower there is no problem. So, there is no need to really

look at the metropolis function or conditions you know you simply accept that point x 2.

So, this is how the method goes.

But on the other hand, suppose f x 2 is actually  higher, see what has happened.  We

started  with  x  1  we  got  another  point  x  2  which  is  higher  and  the  problem  is

minimizations. So, what has happened we wanted to go towards the minimized points,

but here as if you know in a figurative sense, we are going downhill. Here the top of the

hill is minimum point and bottom of the hill is you know those points, which are not very

rather high values.

So, in that sense, what happens then we have to apply metropolis condition with a high

probability of accepting the current f x 2 or the point x 2 even though it has got a higher

value right of the functional of the function. So, this is the essential idea that the, you

know in a figurative sense for a maximization point. If it is going up, then no metropolis

condition; if it is going down, then metropolis condition.
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So, however, if it is you know other way round, so let us say the minimization function.

So, this is minimization function.  So, you see this is a local minima, this is a global

minima, so this side is x, this side is f x, so this is the global minima. So, let us say, you

know we were here, say we are here, we are going down, so this point is fine. But we are

going up, so is it to be taken that up point is taken or not, see the up point could be while

in the search for the global minima, or the up point could be somewhere here, and then

we are going up.

So, if you are here and we are going up, it is good, because we are avoiding the local.

This is local minima, this is global right. So, if you are at starting from here, so this is x

1,  and this  is  x 2,  we are going up, this  is  good, we are going towards global  max

minima. But if it is here, and we are going up that is not good.

So, therefore, going up has got both good and bad situations. So, what really it does, if

you are at a high temperature, so initially when things are at a very high temperature, at

the time chances of going downhill is actually favored. The probability of accepting the

value, if you are going downwards in case of maximization, and upwards, I mean the

function value is higher, you know in minimization, we can still accept. But, slowly very

slowly we reduce the temperature,  and as the temperature goes up, the probability of

accepting  the reverse direction movement  reduces is  not  that  is  the annealing  that  is

where the comparison with the physical annealing process comes in.
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So, same thing is written here, inspired by annealing processing in which materials are

raised  to  high  energy  levels  for  melting,  and  are  then  cooled  to  solid  state.  The

probability of moving to a higher energy state, instead of lower is the metropolis function

p equal to e to the power minus del e by k T, where k is the Boltzmann constant, and del

e is the positive change in energy level, T is the temperature, and k is the constant. So,

for our purpose, we shall take k equal to 1. Although everyone knows in typical you

know physical processes, the k is definitely not 1, but ours is not really, truly you know

annealing process, we are just drawing an analogy. So, we take k equal to 1.

Temperature is high at the beginning. So, when we start at a very high temperature, at the

time these probabilities are high right. As temperature goes down, probability for moving

to a higher energy state, instead of lower will be less and less. So, as temperature is

lowered,  probability  of  a  downhill  move gets  smaller  and smaller. So,  here,  what  is

uphill; what is downhill, uphill is global maxima or global minima; downhill is opposite

direction. So, if temperature is lowered very slowly, the best energy state is resulted. So,

as you keep lowering the temperature, the process finally comes to a steady state, and the

best energy state is resulted.
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So, this is the physical annealing process. The objective is to line up, all the atoms on

crystal lattice sites without any defects. This is the lowest energy state for these set of

atoms is it alright. So, you see, they are very nicely arranged. So, when the temperature

is hot, you know then all those things, and your temperature is cool, it is a low energy

state, and it is much more stable. So, anneal the material to reach lowest energy state,

first raise to very high temperature allowing the atoms to move around, and then cool

very  slowly,  it  restricts  the  range  of  motion  till  the  atoms  freeze  to  lowest  energy

configuration, so that is the physical annealing process.
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Now, in the essay or simulated annealing algorithm, what exactly we do, let us see that.

Randomly generate a solution string, evaluate the fitness function for all  the solution

string.  Then  set  initial  and final  temperature;  iteration,  how many iterations  at  each

temperature. So, while final temperature equal to initial temperature, for fixed number of

iterations.  Randomly  introduce  a  perturbation  right,  a  small  change  to  the  current

solution string, so that means, from the point that you start, choose a point nearby.

So, evaluate newly generated string, always accept the new alternative, if it reduces the

cost. So, this algorithm is given for minimization, this is given for minimization of cost.

This, the example also that we take, we shall take for minimization. So, always accept, if

the new alternative reduces the cost, because it is a minimization, so always accept right,

so that means, from x 1 to x 2, f x 1 to f x 2, if f x 2 is lower, always accept right.

But  randomly  accept  some  alternative  that  increases  the  cost.  What  happens,  if  the

reverse, that means, f x 2 is greater than f x 1, then apply metropolis criteria alright, this

is  what  it  is.  So,  after  at  certain  number  of  iterations,  then  you  again  change  the

temperature.  So,  this  is  the  essential  process  of  the  simulation  simulated  annealing

algorithm right.
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So, now look how the, what is the analogy. The physical analogy that we have the metal

versus  optimization  problem,  energy  state  versus  cost  function,  temperature  versus

control parameter, crystalline structure the optimal solution.  So, global optima should



solution global optima solution can be achieved as long as the cooling process is slow

enough that means, very very slow.

So, why it should be very slow, the point is at  in the initially, we should be able to

evaluate many points right. And then from those many points, we shall see you know:

what is that particular point which is showing a very good; what you call response, so

that  the system can actually  go to  the global  minima or global  maxima.  But,  please

remember, like in GA that global optima is not guaranteed, so it is not an exact method, it

is an inexact method. Like all  in exact method, the optimum point is not guaranteed

right. So, this is shortcoming of all such evolutionary algorithm techniques right, or meta

heuristics, which is a general characteristics that I have told you before also right.
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Now, what are the steps? So, here are the step once again, input the initial solution and

the  initial  temperature,  generate  and  estimate  the  new  solution,  accept,  then  update

solution, adjust temperature. Now, the update solution is done for a number of iterations

obviously, and only then you adjust temperature right; and if you cannot accept, then

adjust temperature; and then terminate, no and the go back. So, like this that is the steps

of the simulated annealing.
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Let us see the algorithm. So, this is the algorithm that we shall follow for in the example.

So, choose an initial  point  x 0,  a termination criteria  epsilon,  set  temperature T to a

sufficiently  high  value,  and  number  of  iterations  n  to  be  performed  at  a  particular

temperature right. So, take a temperature value, decide on how many iterations to be

done at that particular temperature get an initial value, and a termination criteria. Now,

calculate a neighboring point x t plus 1, which is N x t means, N is a random thing, so

randomly. So, then in other words, choose a random point around x t right that call it x t

plus 1.

Now, see this is again for the steps are for minimization, so that must be remembered; all

these  steps  are  for  minimization  problem.  For  maximization  problem,  the  directions

should be opposite right. So, the question is that the net change of energy should be

negative, because here energy is nothing but the functional value right that is del E is

nothing  but  del  f  change  in  functional  value.  So,  if  the  functional  value  change  is

negative, then accept it right without any question. And set t equal to t plus 1 that means,

go for the next iteration.

Otherwise, create a random number r in this way that is r from 0 to 1, and this is the

metropolis  criteria.  So, take this is the probability  value,  the e to the power e to the

power minus of del E by T, k equal to 1, already I have said.  So,  basically  original



function right, so that was the function e to the power minus del E by k T, where k equal

to 1, so that is that function metropolis function.

So, if r that probability that you have taken the random number, if the random number is

lower than this, now mind you that as the temperature is reducing, these number will

reduce also is it alright. So, what happens that high temperature, this value is high; at low

temperature, this value is low. So, chances of acceptance will be high, when T is high is

it alright.

So,  therefore,  there  will  be  high  change  that  assume  the  r  is  0.5,  0.6,  around  that

obviously, it will be accepted. So, if so then accept it, then set t equal to t plus 1. Else go

to step two, means discard these point, and generate another point is it alright. So, if this

is accepted, point is accepted; if it is not accepted, point is discarded.

Then in the step 4, check whether the new x is very near to the old x right that means,

you know no more hill climbing is possible, because if you have reached the peak, any

nearing point will not be good enough right. So, T will be small, so terminate. Else if t

mod n equal to 0, then lower T according to a coding schedule go to step two, that

means, t mod n means that number of iterations have been done right. So, in that case,

lower the temperature, and again generate a new point, so that is the essential steps of

simulated annealing.
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So,  having understood that  let  us  see  an example.  So,  this  is  the  example.  Find the

minimum value of a  function using simulated  annealing.  Minimize  f  x  equal  to  500

minus 20 x 1 minus 26 x 2 minus 4 x 1 x 2 plus 4 x 1 square plus 3 x 2 square, along

with some x 1, x 2 conditions. And assume, temperature reduction factor c equal to 0.8,

and maximum number of iterations has n equal to 2.

Having said that I have taken these ratios of 0.8, and only 2 iteration, because of we are

doing  it  in  the  class;  When  you  do  computer  interactions,  you  should  take  more

iterations,  not just 2, may be 10, 20 iteration,  so that you explore the solution space

sufficiently for every temperature is it alright. So, those values and probably depending

on the problem, you may reduce the temperature more slowly, instead of 20 percent in

each step is it alright, so that is how things go.
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So,  how  to  generate  the  temperature?  So,  the  first  task  is  to  calculate  the  initial

temperature T. So, usually what is done, we take some random points. So, in this case,

you have taken four random points. So, in this four random points that is 2 0, 5 10, 8 5,

and 10 10. We have calculate the function value, we call that was our original problem

minimize  f  x.  So,  we find the  functional  value  in  each of  those  random points,  for

example, in the 1st point 2 10, the value is 500 minus 20 into 2 26 into 0 4 into 2 into 0 4

into 2 square plus 3 into 0 square equal to 476, so that is the functional value at point 1.



Similarly, we can find functional values at point 2, point 3, and point 4. So, when we

found out all these functional values, so if I take the average of these functional values

476 plus 340 plus 381 plus 340 by 4 equal to 384.25. So, what is this 384.25, this is our

initial temperature.  So, the temperature is nothing but a functional value right, it is a

functional value. This functional value is a you might think that that is the kind of this is

the kind of functional value randomly; you know it is we are around this point right.

Now  we  have  to  choose  an  initial  design  point  randomly.  So,  again  through  a

randomization process, we got the initial point, let us call it 4 5. So, 4 5 is our initial

design point. So, we have computed the initial  temperature T by taking four random

points, and we have taken an initial design point X 1, which is 4 5 is it alright, so that is

the first.
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Then after  that  you know we go to  the next  step.  So,  at  the  next  step,  we find the

functional value at our initial design point 4 5. So, 4 5 is our initial design point, the

function value is 349 right, and this is our first iteration. So, what we do, generate the

new design point in the vicinity of the current design points. So, this is our 349 is our

current design point. So, select two uniformly distributed random numbers, u 1, and u 2

right. So, two random numbers we have to obtain.

Assuming those two random numbers are 0.31 and 0.57. Why are they 0.31 and 0.57,

they could be any other number right. Nothing very great about 0.31 and 0.57, it is a



random number; we have obtained from calculator or by some other method. So, these

are the two random numbers, assuming plus minus 6 accuracy. So, since X 1 is 4. So,

actually X 1 point X 1 is small x 1 and x 2. So, these are the two variable, so which gives

x 1 equal to 4, and x 2 equal to 5. So, this is the that is we are calling point x 1 the capital

X 1 right.

So, now x 1 will be varying, because of plus minus 6 minus 2 to 10, and x 2 minus 1 to

11, 4 5, so like this. So, using that random number, so the what will be the new value,

new value will be minus 2 plus u 1 into 10 minus minus 2, and minus 1 plus u 2 into 11

of minus these two. So, this point comes to 1.72, and 5.84. So, this is going to be our

new design point.

Now, look here, in the new design point, what is the function value. So, if we if we put it

in f x, this point 1.72, and 5.84, what do we get, we get 387.7312. Now, how good is this

point, this is good or bad tell me, the original function was one of minimization right.

When X 1 is equal to 4 5, that means, capital X 1 the initial point, then the function was

349.

Now, at after iteration, we got a new point 1.72 and 5.84, and the function value is 387.

So, it is a good or bad, in a traditional hill climbing sense, this is a bad point. Why,

because it is a minimization problem. And in the new design point, the function value is

increasing. But we have seen that to really cut off the global you know minima from our

consideration, we might also sometimes except you know lowering of value, or in this

case, increase of value going in the opposite direction based on the metropolis criteria.

Let us see what is that. So, the del f in this case is f 2 minus f 1 that is 38.7312 that is our

del f. So, what we have to do, we have to apply the metropolis criteria.
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So, let us take a random number, assume that that random number is 0.83. So, this is our

random number 0.83. Now, we have p X 2 is e to the power minus del f by K T, and K

equal to 1. So, we see, this value is 0.9041 right. So, what we got, we got r is less than p

X 2.

So, our random number is less than; that means, we accept this point. So, although the

point is a bad point, but we still accept these point as the objective function value f 2,

although it is higher, but still accepted. And usually this is happened, because of high

current temperature that is how, this probability has come such a high value. Note the

point, so that is how, it is done.
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And further if we do iteration at the second iteration, again by the same method. We take

two random numbers, and with plus minus 6 accuracy around this point, that means,

between minus 4.28, and 7.72. And these two ranges, again we take using these two

random numbers a new point. And this new point is X 3, which is 6.76 and 8.6. So, when

we put that the new function value comes to 313. Look here, the old function value was

387. So, from 387, we have actually come down by 74. So, this is the good thing, it is a

minimization  problem,  and  we are  going  down,  so  that  means,  the  point  should  be

accepted, there is no need to apply metropolis criteria is it alright, so that is the thing.
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So, we have done our two iterations, metropolis criteria not required. Since, a cycle of

iteration  with  the  current  value  of  temperature  is  completed,  now  we  reduce  the

temperature  to  a  new value.  Actually  it  will  not  be  0.5,  this  will  be  0.8  right.  So,

whatever is the value, 300 something that will be coming right, so that will be our new

temperature. And our step 3, generate a new design point, and like this, we will continue

is it alright. So, like this, we do the simulated annealing process right.

(Refer Slide Time: 30:53)

And let  us  see  further  some drawbacks  of  simulated  annealing.  Although  can  avoid

formation of any cycle, the rate of improvement is very low that is the good bad point.

SA does not have any memory to keep records of previously visited solution, so the point

is  we  might  come  back  to  the  same  solution  again  right.  So,  this  is  the  simulated

annealing method. We shall see more such methods, in our subsequent lectures right.

Thank you very much.


