
Selected Topics in Decision Modeling
Prof. Biswajit Mahanty

Department of Industrial and Systems Engineering
Indian Institute of Technology, Kharagpur

Lecture – 35
Generic Algorithm Examples

Right, so in our subject, Selected Topics in Decision Modeling, we are in our 35th lecture

that is Genetic Algorithm Examples.

(Refer Slide Time: 00:38)

So, in the last few lectures, we have seen the Genetic Algorithm Method and the process

of genetic algorithm. So, let us see some examples ah. We have also seen one example on

the travelling salesman problem ah. Here are some more examples. Let us start with a

simple one; that is, let us say we want to maximize x square plus 1 over a very small

range that is 0 to 31.

So, when we want to do that. So, we can use let us say binary code. So, binary code here,

we need a chromosome length of 5; why 5? So, chromosome length of 5 is required ah.

The reason is that you know number is between 0 to 31; that means, a range of you know

32 is should be sufficient; that means, 2 to the power 5 is 32. So, using that, 2 to the

power 5 equal to 32. So, we can have a chromosome length of 5. So, you see that if it is

11111, it will be 31 and 0000 will be 0. And let us take only a population size of 4 with a

one point crossover and Roulette wheel selection.

So, first is we have to generate an initial population. So, let us say, we have generated an

initial population 01101, this is the function and 1100001000 and 10010. So, what

exactly we have done? We have flipped some coins and got this 0’s and 1’s. So, that is

our initial population.

So, initial population has got 4 chromosomes, that is 13, 24, 8 and 18. So, what we do

with them?

(Refer Slide Time: 02:35)

Let us see. So, first you know, this is our initial population. So, we compute the fitness

that is the functional value in this case, then we compute the probability you know this f i

by sigma f i. So, these are our fitness function value. This is the sum of all the fitness. So,

if I divide, then this is the probability. So, with this probability, we constitute the roulette

wheel. So, you could see that the first one, the fitness is 170, the sum is 1137. So, 170 by

1137.15 is allocated to the string number 1. So, you see, this is the string number 1.

So, this is our string number 1. So, like this, we allocate all the strings and you know this

is our expected counts. So, why these are expected counts because, how many times you

know out of if I do it four times, suppose we want to select 4 parents, then what is the

time we get these numbers? So, you know these are 0.6, 2 basically 4 times those

numbers, but actually you know what we got is 1, 2, 0 and 1. How, how exactly we did

this experiment?

We again took some random number between 0 and 1. Suppose in the first time, the

random number comes out to be 0.3. So, 0.3 will actually, so, 00 to 0.14, we will select

the first one; 0.14 to 0.64, we will select second one. So, this you know particular

number say 0.3 or something we will choose the second string. So, like typical random

number experiment, we got those actual count. So, if you see the actual counts, we got

one you know time the stream 1, two times the stream 2 and one time the stream 3,

stream 4. So, that we will constitute our the mating population.

So, that is our mating population.

(Refer Slide Time: 05:13)

So, let us see. So, this is how you know mating pool. So, look at the mating pool. The

mating pool is that first one, second one is twice and the fourth one is it alright. So,

arbitrarily we took some probability and we got the crossover points. So, 4 and 4 and

here, 2 and 2, after that you know if I do let us say crossover between these two and

these two, then this is how the crossover has been obtained.

So, how the crossover is obtained? So, look here these four is equal to these four and

these 0, that is 1 and these four, that is this four and this 1, that is this. So, like this, we

have done. Now here also these two has these three. So, these two has these three; so,

these two, these two; these three, these three. So, that is how the crossover is made right.

Now, these are the offspring. So, look here these offspring values are 12, 25, 26 and 16.

So, this is going to be our next generation and look at their fitness; their fitness is 1705 as

the total fitness and the average fitness is you know 426.06. So, the maximum is 677. So,

you see, earlier our maximum was you know 577. So, that was these value and here our

maximum is 677.

So, you can see that neat solution has improved. The average solution has also improved

which was earlier 284.25, now it is 426.25.

(Refer Slide Time: 07:20)

So, like this, you know this things are going on and we can also have some mutation. We

took some random probabilities and see the so many random numbers are required

because string 1 has 5 positions, same is 2, 3 and 4. So, assuming a mutation probability

as 1 by 5, that is 0.2. So, we generate random numbers for all 20 genes and we got in two

cases, the number is below 0.2. So, we do mutation out there. So, what is that mutation?

0 will be 1 and 1 will be 0.

(Refer Slide Time: 07:58)

So, like this we can carry out mutation.

So, you can see that, what are the position; the second string, third and fifth. So, this is

the second string. So, the second string, third and the fifth, we had some mutation. So,

what is that mutation? 0 becomes 1 and 1 becomes 0. Is it alright? So, that is how the

offspring has become after mutation. So, after mutation very interestingly that the value

has gone up. So, it has become 785.

So, it is not that after mutation the value will always go up you know in this particular

case, it has gone up because mutation is mainly done to really improve population

diversity. That is the main purpose. So, we have done that and you know that is how by

the recombination operators of selection crossover and mutation the system moves from

generation to generation. So, this is the essential idea of the process, the GA process.

(Refer Slide Time: 09:09)

So, let us take another example that the second example. Suppose we have a supply

chain and in this supply chain we have some you know the demands from plant to the

customers, is it alright. So, we have the distances in kilometers, you know from plant one

to the various customer zones and let us assume that the transportation cost would

depend on those distance values, it is alright. So, objective function is minimized the

distance. So, that means, plan one should supply to customer 1, 2, 3 or 4 or plant 2 will

go to the other. The point is every customer zone must be having a supply; is it alright.

So, it is basically a kind of assignment problem, how do we do assignment ah. So, that

the total cost is minimum. Now look here, usually we usually we try to solve such

problem as maximization. So, our fitness function will not be same as objective function.

So, that is the first thing to note, alright.

(Refer Slide Time: 10:23)

So, what we do? We could make some changes. So, let us say we make the fitness

function as 100 minus D alright. So, minimize D is actually means maximize 100 minus

D alright. So, that is how we can do and selection my expected count that is the roulette

wheel f by f average and the crossover you see. This is the kind of crossover that we

thought about that suppose a, b, c, d and i, j, k, l are two parents, then child will be l, j, k,

i and d, b, c, a. Basically, you know these kind of things are required because this is more

like a permutation encoding, right.

So, I, have explained permutation encoding while discussing the travelling salesman

problem. The permutation encoding will be something like this that 1, 2, 3, 4. So, if

another string is 2, 3, 4, then fourth number should be 1. Really in assignment problem

situations, it means 1, 2, 3, 4 means 1 to 1, 2 to 2, 3 to 3 and 4 to 4 and 2, 3, 4, 1 means 1

to 2, 2 to 3, 3 to 4 and 4 to 1 alright.

So, I hope you understood the crossover and mutation. So, a, b, c, d and i, j, k, l after

crossover will become, l the last one should be first; first one should be last; the middle

one remains as they are. So, here also a, b, c, d becomes d, b, c, a alright. Now what

happens that we choose some random numbers, let us say crossover probability is 0.8.

So, you know we have some probabilities and we see that the string 3 and 4 are selected

for crossover in iteration 1; that is these two because the probability is lower than 0.8.

And here string 1 and 2; they will be selected for crossover because their random number

is less than the crossover probability. So, this is how we make use of crossover

probability to choose whether to go for crossover or not, right.

(Refer Slide Time: 12:55)

So, with that now let us see these are the strings. So, this is the distance values and 100

minus D, those are the fitness function. So, this was the original matrix.

So, what we did for all the strings? We compute the fitness values, very simple; simply

look at that the first one, let us see what happens to the first one. This is the distance 20,

then 9, then 23 and 7; just add them 1 to 1, 2 to 2, 3 to 3, 4 to 1. So, total distance will be

59. But had it been 1 to 2, so, 25, then 4, you know the customer zones, 4, 2 to 4 need not

that way I think this is 14, so; that means, 2 to 1, then 25, then your 17, the third one, that

3 should be on 17 and 30; 2 to 4 actually, this 25 and this 17, not this one right; so, 14,

25, 17 and 13.

So, like this, we compute those distances and 100 minus D, that will give us the fitness

function value. So, these are our fitness function values for those four strings right. So,

having obtained that, now let us see what we get.

(Refer Slide Time: 14:37)

So, this is our strings, this is the objective function, these are the fitness function, then

we get the f total and f average. So, if I divide by f total by f average, you know, then we

get and multiply by 4, we get the expected counts. So, we got some expected counts for

the initial population.

So, in this case, we made a simplified system that depending on the expected count, we

find how many should be the number of strings. So, you please understand that every

genetic algorithm is different and it is up to the design that to follow different procedures

that is different selection, crossover or mutation methods right. So, there will be

variations of these types, alright.

(Refer Slide Time: 15:33)

So, then after that, these are our mating pool. You see the string 2 and 3 are the same.

This is nothing but the same 3-1-4-2 has got two copies; so, two copies; 1-2-3-4, one

copy and 4-3-2-1, one copy. So, this is our the mating pool and through this mating pool,

we did crossover. So, 1 and 2, we choose for crossover sorry 3 and 4.

So, 3 is 3, 1, 4, 2 and 4 is 4, 3, 2, 1. So, after crossover, what they will become see this 4,

3, 2, 1 becomes 1, 3, 2, 4; can you see that? These 1 has come here, 4 has gone there and

this string, this 2 has come here and this 3 has gone there; is it alright. So, that is how the

parents and the childs are obtained. So, like this, we have now some new strings that is

1- 2-3-4, 3-1-4-2; these two remains as they are, you know they are replicated. They

remain in the new population and these 1, 2, 3, 1-3-2-4 and 2-1-4-3, they join in the

string right. So, having obtained this, that is after crossover then we see what is the new

situation.

So, these are our new strings; that is 1-2-3-4, 3-4-2 1-3-2-4 and 2-1-4-3 and again we

compute the D and 100 minus D by the procedure already shown. So, this is our new

fitness function values. So, same thing is replicated once again and look here, this time f

average is 35.75; look what was in our earlier case, in the first generation, it was 33.75.

So, after crossover, we found that I mean when the new generation is obtained, the new

generation the having a higher average fitness right.

So, once again, we compute those expected counts. Basically, 41 into you know by 143.

So, that is if I divide 41 by f average, then I get those expected counts and from the

expected counts, we can see some numbers; maybe we can obtain through random

numbers also. So, that will be for our next crossover.

In this case there is no mutation considered, alright. So, once again, by same procedure

we do the, from the mating pool and crossover and we get a new set of you know strings.

So, all these new set of strings, once again we compute that D and 100 minus D, the

fitness function values. So, this time if you look then there new fitness values have

become 35. So, this case, what has happened? These fitness value have slightly reduced

right. So, it is not always that the procedure has to guarantee that average fitness value

will increase, but overall, the solution will be better. So, but then, what is more

interesting is that let us see what was the best possible string. That is also very important

to see.

So, you see the best fitness value here was 44 in the first generation, in the initial

population. Now, at the second also, we had 44 right, but after the third generation, you

know also 44.

(Refer Slide Time: 19:23)

(Refer Slide Time: 19:24)

So, we could not get a better string then a fitness value 44 even after three iterations at

the third iteration, maybe we could have got a better string in a in further operations

because it is a very simple problem. In a large problem, we go for many generations ah.

We have to have a computer installation of such problems and we may get better

solutions alright. So, we saw at least one assignment problem and a functional value for

how to solve by GA.

Let us see some examples about the Knapsack problem.

(Refer Slide Time: 20:13)

So, we have already seen Knapsack problem in dynamic programming. We have also

seen in integer programming. So, it is known to us, what is a knapsack problem? The

there are certain things. So, like a, b, c, d, e, f and they have different sizes and different

values. So, total size is fixed let say 50 and that is to be filled so as to maximize the

value. That is the usual knapsack problem.

(Refer Slide Time: 20:46)

So, what is it? That see, assume that it is a binary knapsack that is 0 or 1 should only be

selected. So, if that is so, then we have an objective function maximize sigma i equal to 1

to n v i x i subject to s i x i less than equal to 50. So, what should be the fitness function.

So, the maximize part is fine. Now, who will check this constraint every time we select

and do crossover and mutation. Say the point is, if you leave it to the process if you think

that fine I have got the string and I have this fitness and I will keep checking, you know

every time I do selection crossover and mutation, it will be too cumbersome.

So, a better method that is called a Penalty function approach, a Penalty function

approach. So, this approach essentially, what it does right? It actually adds you know this

constraint in the objective function itself and converts the constraint problem to an

unconstraint optimization problem. And however, you know it also means that it allows

some infeasible solutions in the solution space.

But their fitness value should be very very low, is it alright. So, how because so that, they

are so unfit you know their fitness values are so low that they are chances of getting

selected in the next generation with crossover or mutation is very very low is it alright.

So, how exactly this is implemented?

(Refer Slide Time: 22:48)

So, look here. This is an example what we have done ? You know we have created a new

fitness function as sigma v i, x i plus minimum of 0 and a penalty say 1000 could be any

other value 50 minus s i x i. So, you see how it works. Assume that s i x i equal to 20,

alright.

So, s i x i equal to 20. So, what will be the value of 1000 into 50 minus s i x i. It will be

1000 into 50 minus 20. So, it will be 30000. Can you see that. So, it will become 30000

alright ah. Now assume another example; suppose s i x i equal to 60. So, what this term

1000 into 50 minus s i x i will become 1000 into minus 10 to minus 10000.

So, just see I have given two examples. In the first example, if s i x i is 20, that is within

the constraint, the constraint was s i x i should be less than 50, is it not that was our

constraint. So, in the first instance, that is sum over s i x i yeah. So, in all these cases, it is

actually the sum over, the sum over this missed. So, you know this please put that sum

right. So, this is the sum; that means, the total of total value total sorry total I mean wait

or something should be within 50. So, that is the sum. So, that is well.

So, you see when the value is 20; that means, within 50 these evaluates to 30000 and

when it is above 50; that means, not within 50, it evaluates to minus 10000. In the first

case, when the it does not cross the limits it evaluates to 0 because 0 and 30000,

minimum is 0; that means, these term will become nothing but v i x i ; is it not in the

these case. In the first case, in the second case what will be these term; these term will be

sigma v i x i minus 10000, can you see that. So, the fitness function is reduced by a huge

margin right. Those strings are going to have very very low values; that means, they are

actually infeasible because they cross the weight but they will be still considered, but

with a very low fitness value. So, this is exactly how these problems are treated.

Suppose we have these two chromosomes.

(Refer Slide Time: 26:39)

So, what happens, we do single point crossover. So, we you know already how it is. So,

at the third point is the crossover point, so, 101 and 111 and 110 and your 100 right. So,

those are two childs. And in two point crossover, if you do then the middle portion will

be interchanged and the mutation will be simple bit inversion; is it alright. So, that is

how the crossover and mutation is done.

(Refer Slide Time: 27:11)

Ah let us take another problem which is not a 0, 1 problem. So, there are things a, b, c, d,

they are in different numbers and the knapsack size is 150; the values and sizes are there

ah; here how do we go about. So, one thing you understand that since it is not a 0, 1

programming, your binary encoding is not going to work. So, what we have to do is we

have to do real encoding right.

(Refer Slide Time: 27:43)

So, how real encoding is done? So, you see you can have something like four digit 4, 8,

5, 3 which means 4 a’s, 5 b’s, 6 c’s and 7 d’s alright. Fitness function will be as before

and single point cross over and single mutation may be used, right.

So, what if the available are not 9? Then use a suitable penalty approach is it not so

supposing if they are within 0 and 9 that is fine. But supposing the number is not 9

number is more than 9 then probably we have to use 2 digits each, right, right, we not

necessarily penalty function all the time. We might have the real encoding or 2 bits each.

So, the problem has to might have to be encoded in more than one bit for each item fine.

(Refer Slide Time: 28:41)

So, this is how now in this lecture, let us also see something very interesting that is called

Tree Encoding. See this Tree Encoding is sometimes what happens supposing we have

an objective function and we really want a formula for a function, is it alright. So, we

want a formula for a function. So, basically, we want a particular value to be maximum

some fitness function value should be maximum but we want to know what is that

formula.

We have to actually discover the formula, so, something very interesting. So, we can do

really tree encoding. So, tree encoding is used mainly for evolving programs or

expressions. Every chromosome is a tree of some objects such as functions or commands

in programming language. So, it could be a programming language also, something like

do until, step wall, something like this.

But this can be read as plus x divided by 5 y, is it alright. So, plus x divided by 5 y. So,

you see this is like a formula. So, if you add further trees, you can also really write a

formula. So, this is the encoding, the encoding gives a formula right. So, and this string

then can be evaluated based on the given x and y values and see what kind of fitness

function we are obtaining.

So, sometimes like you know those empirical relationships, we have to obtain. Suppose,

we know something depends on three values, we really do not know what is the

relationship. We have to discover the relationship; we only know the functional values.

So, from the functional values we can discover the best possible empirical relationships

by going for tree encoding; is it alright.

(Refer Slide Time: 30:39)

So, finding a function that would approximate given pair of values, input and output

values are given, the task is to find the function that we give the best or the closest

desired outputs for all inputs. Chromosomes are functions represented in a tree.

(Refer Slide Time: 30:58)

And look how the crossover is done.

So, if we have two parents, you know this is a crossover point for parent A and parent B.

So, what happens, that you know these portion gets replaced by this. So, we get a new

offspring where it is earlier to us x into divide a x and divided by y plus 3 ah. Here, it

will become x divided by y square; is it alright. So, that is the kind of interesting things

that we can do with the tree encoding right. So, this could be a little more complex, but

you know just to mention that we also have Tree Encoding right. So, I stop here and,

Thank you very much.

