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So, good morning in our course Selected Topics in Decision Modeling today we are in

our 27th lecture that is Constrained Non-linear Programming: KKT Conditions that is

Karush-Kuhn-Tucker conditions.
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So,  we have seen  that,  how to  solve  non-linear  programming problem with equality

constraints in our last class. There we had use Lagrange’s multipliers and differentiated

the function, to find out conditions for optimality. Whereas, for inequality constraints

Lagrange’s  multiplier  cannot  be  utilized,  we  need  to  go  for  a  little  more  involved

calculations with the help of KKT conditions. 

So,  some  of  the  basic  features  the  objective  function  can  be  linear  or  non-linear,

constraints can also be linear or non-linear and constraints can be of any type that is

inequality  or  equality. If  you recall  I  have  told in  our  last  class  that  the  Lagrange’s

multiplier is a special case of KKT conditions.

So, at some other time I will also show you that how it is really happening. So, you see

any linear programming problem can be put in maximization general form. If it is not

happening then we must ensure how to do it is alright. So, the first of all let me just tell

its right in the beginning that all the conditions and all the discussions that we are going

to  have,  we  shall  you  know  assume  the  programming  problem  the  non-linear

programming problem is available in the general form, that is maximized f which is a

function of x really speaking x is having several variables x 1, x 2 to x n. 

And subject to conditions h i x less than equal to b i, you know where i is 1 2 m is it

alright. So, that is the general form that we are going to use for all the KKT conditions.
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Now, Karush-Kuhn-Tucker  conditions  or  in  short  KKT conditions,  where  you know

obtained by Kuhn-Tucker, but then Karush independently obtain them actually earlier

right  in  his  thesis  work.  So,  that  is  the  reason  why  these  conditions  and known as

Karush-Kuhn-Tucker conditions. But just remember this that these conditions they are

not the only conditions required for optimality, infant there only the necessary conditions

right. 

So, KKT conditions are the necessary conditions for the NLP problem, the sufficiency

condition is still you know the for the maximization problem the fx should be concave

and each constrain should be convex is it alright. So, you just recall our discussions that

for  maximization,  but  you require  the  objective  function  should  be  concave and the

constraints should be convex.

Now, sometimes we have linear constraints, the linear constraints are both convex and

concave at the same time. So, if I have linear objective function, then automatically we

can assume the objective function to be concave or if we have constraints some of the

constraints  a  linear,  than  those  linear  constraints  can  be  also  assume  to  be  convex.

Because linear constraints or objective functions at are both concave and convex at the

same time. 

But if it is non-linear, then the concavity has to be seen, either by the nature of the plot or

by obtaining the second differential  that is  you know in when multiple  variables  are



involved, then obtaining the Hessian matrix. So, we will see that in due course of time

right.
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So, let us look at the KKT conditions. So, first of all when we are solving in a general

approach  to  constrained  non-linear  problems,  let  us  assume  that  we  have  certain

functions that is f x gi x g 1 x g 2 x to g m x they are all differentiable functions and

having certain regularity conditions as well. Then the x star which is a combination of n

unknown  variables  or  decision  variables,  can  be  an  optimal  solution  for  the  NLP

problem, only if they are exist m number of multipliers u 1 to u m such that a number of

KKT conditions are satisfied.

So, what are the things that we said? Just imagine you know just remember that the our

original problem was maximizing f x subject to number of conditions those g i x less

than equal to b i. So, they all should be differentiable that is first requirement and you

know they are exist certain multipliers that is u 1 to u m, you know along with them we

will have those KKT conditions which must be satisfied for x star to become optimal

right. So, these are the certain preconditions now let us look at the KKT conditions.
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So, the first condition as you can see is del f del x j minus this sum over all the u is i

mean each this sum is taken over each of the constraints u i del j i del x j less than equal

to 0 that the first condition valid at the optimal point and for each of the x variables.

So, this is more like the differential condition, but the condition you see we have you

know the objective function and we also have a series of constraints. So, if I multiply

those constraints by our multiplier, that is the u i s. So, each safest constraint multiply by

u 1, second multiply by u 2, third by u 3 etcetera etcetera and then we differentiate you

know by taking appropriately that is very important the negative sign. 

These negative sign of combination usually is used for maximization problem sometimes

plus is used for minimization, but we can generalize with negative also we will have

some  discussion  later.  The  second  condition  is  just  the  first  part  whatever  the  first

condition left hand side you see the same portions. So, if you see the first part, see this is

the LHS of the first condition.

So, this is the LHS of the first condition. So, that multiplied by x j star is it alright. So,

the LHS whatever the differential part you get for the first condition, if you multiplied by

x j  star  that  should  be 0 that  is  the  second condition.  That  means,  either  these  first

constraint is equality or x j equal to 0, x j star equal to 0. So, what that second condition

says is that, either the first condition is an equality or the corresponding x variable that is

x j star should be equal to 0 is it  alright that is the second condition says. The third



condition is again very straight forward because we see that you know g i x is less than

equal  to b i  that  is  our specific  constraint.  So,  it  is  the same constraint  written in a

another  form.  So,  really  the  third  constraint  is  nothing  new,  because  the  original

constraint we have is g i say x 1 less than equal to b i.

So, the same constraint, we have written in this form. So, this is the constraint itself and

at x 1 equal to x 1 star at x 1 equal to x 1 star these should be star. So, see this was our

original constraint. So, the same original constraint has been rewritten in these form. So,

that is our third constraint. So, you can understand that although they look you know

rather big, but really speaking now the constraints are very simple in fact, the first one is

nothing, but the differentiation, the differentiation should be less than equal to 0.

The second condition is either the LHS of the first condition that becomes 0 that means,

del f del x are j should be equal to these term or the corresponding x variables should be

0  and  the  third  one  is  nothing,  but  the  constraints  the  corresponding  constraints

themselves right.
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So, we have seen those first 3 conditions let us see the last few conditions. So, see like

we said in the case of the constraints, the differentiation. So, our original constraints has

been rewritten as gi x star minus b less than equal to 0 so, b i. So, that is that is has been

written.  So,  again  so,  multiply  by  the  corresponding  multiplier  multiply  by  the

corresponding multiplier should be equal to 0. So, that is the fourth condition.



So, once again and fifth and sixth condition should be the all the multiplier should be

greater than equal to 0, and all the decision variable at the optimal point should be also

greater than equal to 0. So, these are our six KKT conditions. So, just look at them once

again you know the if you if you if you really see, then the yeah.
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So, this  is  these are the KKT conditions,  the first  condition is the differential  partial

differentiation  with  respect  to  each  variable.  So,  we  had  n  unknown  variable  each

variable should be taken one at a time. The first part is the objective function part, the

second part is the individual constraints multiplied by the multiplier and then taking the

negative of the you know the partial differentiation. The second constraint is the LHS of

the first part should be either 0 or the corresponding decision variables should be 0.

The third constraint is the original you know the constraint itself written in another form,

the fourth constraint is either the you know it becomes equality. The constraint become

equality or the corresponding Lagrange the multiplier become equality and the fifth and

sixth conditions are basically you know non-negativity constraints both for the decision

variables and for the multipliers is it alright.

So, this is how we begin with the KKT conditions, these are the six KKT conditions. So,

for improving our understanding let  us look at a particular problem very simple one,

simplified version of the KKT conditions once again. So, let us say we have a 2 variable

problem maximize f x 1 x to. So, a function which is having f x 1 x 2 and subject to 2



constraints only that is g 1 x 1 x 2, in short we can also write these thing as this that

maximize f x subject to g 1 x less than equal to b 1 and g 2 x less than equal to b 2. So,

that is all is our problem very simple problem we take.

Now, the condition that is required is all the 3 functions that is f x, g 1 x and g 2 x should

be differentiable that is the requirement. Now x star equal to x 1 star x 2 star can be an

optimal solution for the NLP problem, if and only if they are exist u 1, u 2 2 multipliers

such that they are actual equivalent to Lagrange’s multipliers. So, such that all the KKT

conditions are satisfied is it alright. So, this is the requirement.

So, let us see once again what exactly is you know this conditions are essentially. So,

first condition you see suppose I write a function a let us say total you know the function

the combination function.
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So, let us call it combined function. The combined is f x minus u 1 g 1 x minus u 2 g 2 x.

So, what is this combine function? This combined function is obtained by combining the

function f x along with the 2 constraints g 1 x less than equal to b 1 and g 2 x less than

equal to b 2. So, if I combined them then what you get is, f x minus u 1 g 1 x minus u 2 g

2 x. So, now you see the first constraint is nothing, but the differentiation of this function

with respect to x 1 and with respect to x 2. So, please differentiate these with respect to x

1 what do you get? Del f, del x 1 minus u 1 del g 1 del x 1 minus u 2 del g 2 del x 1.



So, precisely that is what is written here g 1 is nothing, but g 1 x g 2 is nothing, but g 2 x.

So, that should be less than equal to 0 that is the first condition. So, similarly the second

condition is again the differentiation of the combined function, that is del f del x 2 minus

u 1 del g 1 del x 2 minus u 2 del g 2 del x 2 less than equal to 0.

So, that is the second condition of the first condition second part the second condition

again will be the either you know these partial differentiation of the combined function

should be equal to 0 or the corresponding optimal variable that the at the optimal point.

So, either  the equation becomes equality  or the variable  corresponding variable  is  0,

right.

So, either these equal to 0 right this term is 0 or the corresponding decision variable

equal to 0 same thing holds for x 2 also. So, I hope the first two conditions which are the

most important KKT conditions you have understood clearly is it alright. So, if you have

understood  these  two  conditions  clearly,  let  us  see  the  remaining  conditions  the

remaining conditions are again.
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For the same problem you know how the third condition is nothing, but the constraint

itself. The constraint itself that is g 1 x 1 x 2 or we can write g 1 x less than equal to 0

and g 2 x 1 x 2 minus b 2 less than equal to 0 at the optimal point.



So,  the  star  we  can  write  star  sometimes,  but  to  you  know  make  simply  see  for

simplification, we may not write star in between calculations, but we should know that

we are calculating the variable at the optimal point because all these KKT conditions are

true not always, but at the point of optimality is it alright. So, that is the third condition

and the fourth condition is either these constraints become equality or the corresponding

multiplier becomes 0 is it alright. So, that is what is essentially they say they the these

are the fourth conditions.

The fifth conditions are the at the optimal point the variables should be greater than equal

to 0 the sixth condition has not come properly. So, that should means u 1 should be

greater than equal to 0 and u 2 should be greater than equal to 0 right.

So, these are the sixth conditions. So, this is how you can see that how the at the optimal

point,  the necessary conditions are that the KKT conditions must hold right.  So, you

understood so, once again that we are having non-linear programming problem with you

know inequality constraints, which also includes the equality constraints also. In fact,

equality  constraints  are a special  case in case of equality  constraints  really  see what

happens.

These automatically it becomes 0. So, if these becomes 0 so, it is not really necessary

that u 1 and u 2 to become 0 also and the first constraints then become trivial is it alright.

So, we will discuss it some other time now let us look at a particular problem and see

how optimal solution can be obtained for a particular problem by making use of the KKT

conditions right.
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So, let us take these problem; manufacturer uses a raw material produced product A and

product B right. Now for producing this product A and product B first of all there is a

cost, the cost is 30 rupees per kg for A and 50 rupees per kg for B. Now the cost of raw

material is rupees 100 per kg and maximum available raw material is 40 kg right. 

The selling price of each kg of A and B follow the given price formula what is the price

formula. The selling price of A is 200 minus 2 into quantity of A and selling price of B is

250 minus 3 into quantity of B. So, determine the optimal quantity of product A and

product B to be produced for maximization of profit right. 

So, these looks like a simple optimization problem, but there is a catch the selling price

is not linear. I mean its linear now, but when you convert it to objective function then it

will become non-linear right. So, let us see how to formulate the problem first.
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So,  these  are  the  decision  variable,  suppose  x  1  is  the  amount  of  product  A to  be

produced in kg, x 2 is the amount of product B to be produced in kg and x 3 is the

amount of raw material used is alright. So, what is the profit equation? Profit will be

quantity into selling price minus cost is alright. So, what is the quantity? Quantity is x 1

and x 2 what is the selling price? 200 minus 2 into quantity, that is 200 minus 2 x 1 and

here 250 minus 3 x 2 right.

So, that will be the quantity into selling price and what is the cost? Cost is 30 50 and 100.

So, 30 x 1, 50 x 2, 100 x 3 is it alright. So, that is the thing that the therefore, you can

simplify. So, you see this is 200 x 1 minus 30 x 1. So, 170 x 1, 250 x 2 minus 50 x 2 so

200 x 2 and minus 2 x square minus 3 x 2 square minus 100 x 3. So, this is our objective

function right. So, first part is done. So, we have obtained the profit, but there are some

constraints also right

So, what is the constraint? Constraint is very clear that the 2 product x 1 and x 2 should

not be the sum of these should not be more than the raw material available because that

is a constraint, you cannot produce without the raw material. So, let us see what is that

constraints here. So, let us see that.
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See the constraint therefore, will be x 1 plus x 2 less than equal to x x 3 why because this

is the first product this is the second product. So, if you add them that should be less than

the raw material that is the quantity x 3. So, these kind be reformulated as x 1 plus x 2

minus x 3 less than equal to 0.

So, see this side is the variables and this side because x 3 is not b i. So, b I has to be a

constraint right cannot be a variable. So, since here we have a variable called x 3 so;

obviously, should be put as x 1 plus x 2 minus x 3 less than equal to 0. So, these 0 is like

bi. So, this is our b i, these are the variables right. 

So, that is what we have that the first constraint. Now, the second constraint is also there

that is x 3 should be less than 40, because that is the total amount if you look at the

problem that is the total amount that is available and obviously, since it is a real problem

x 1, x 2, x 3 all should be greater than equal to 0.

So, that is our starting point we have an objective function that is f x 1, x 2, x 3 and

maximize 170 x 1 minus 2 x 1 square plus 200 x 2 minus 3 x 2 square minus 100 x 3 and

these are our constraints right. So, the first question is how do we go ahead solving the

problem. But before even that we should see that if we take the KKT conditions now, the

KKT conditions will really provide the necessary conditions. The sufficient condition

should be we have to ensure that the function is concave.



Now, incidentally we these function is concave, but then can we take the hessian matrix

and find out whether the matrix is really concave I mean this objective function is really

concave no problem about constraints because constraints are all linear.

So, all of them are linear constraints. So, with linear constraints automatically they are

convex so, no issue there.
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So, let us see how we can see that these are concave. So, objective function is the sum of

concave functions. So, if they are automatically the second order differentiation would be

negative,  that  is it  proves concavity. Constraints  are linear  so,  therefore,  they can be

taken as convex. 

Therefore,  if  some solution  could be found to satisfy all  the  KKT conditions  in  the

resulting solution will be optimal, as it satisfies both necessary and sufficient conditions.
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So, let us look at the Hessian matrix. So, you see this is our function right that is the total

function this is the simplified the function, 170 x 1 minus 2 x square plus 200 x 2, minus

3 x 2 square minus 100 x 3. So, the gradient will be del f del x 1 del f del x 2 del f del x

three. So, what should be? With respect to x 1 if you differentiate you get 170 minus 4 x

1. With respect to x 2 200 minus 6 x 2, and with respect to x 3 minus 100. So, this is our

gradient. So, we got the gradient.

Next will be the hessian matrix. Now, you see since they are pure terms of x 1 x 2. So, all

these terms you know they will be 0. So, all of them are 0. So, with respect to these del

square f del x 1 square, that becomes minus 4. Del x d square f del x 2 square that

becomes minus 6 and since there is no term this will become 0. So, this is our Hessian

matrix right.
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So,  we  obtain  the  Hessian  matrix  now,  we  take  the  eigenvalue  by  making  use  of

characteristic equation and this is eigenvalue equation and very simple this one, it comes

to you know these kind of equations that is 4 plus lambda plus star 6 plus lambda star

lambda equal to 0.

So, 3 different values of lambda could be minus 4 minus 6 and 0. So, all the eigenvalues

are less than equal to 0. So, what is our conclusion? The conclusion is the Hessian matrix

is  negative  semidefinite  because  one  of  the  term  is  0.  So,  automatically  since  the

eigenvalues are negative only one is 0. So, we can say the function is concave and we

can have maximum value out of these is alright.

So, I will stop here in our next lecture we continue the discussion on KKT conditions

specifically, the problem that we are doing we shall complete the one.


