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Constrained NLP: Lagrange Multipliers

So, in our course Selected Topics in Decision Modeling, now we are in our 26 lecture

that is Constrained non-linear programming Lagrange’s multipliers right.

(Refer Slide Time: 00:30)

So, in the last few classes lectures we have seen how to handle non-linear programming,

specifically when we have unconstrained problems.



(Refer Slide Time: 00:41)

See the basic difference between unconstrained and the constrained problems are that, in

unconstrained problems we have a function and we have to find the extrema that is the

maxima, minima values, but then there are no constraints. The constraints can be equality

constraints or inequality constraints.

So, here is the example of an inequality constraint problem as you can see these example

we have seen earlier that is supposing we have to maximize Z equal to x y, subject to 4 x

plus y less than equal to 8 and x and y both greater than equal to 0. So, what we basically

do here, we have the axis line x equal to that is this one is x equal to 0 and this is y equal

to 0 and we also plot you know the 4 x plus y equal to 8.

So, you know these between these 3 constrains lines these you know the shaded area that

is our solutions space, is it alright. Now, x y on the other hand that is maximize z equal to

x y so, you know as x y increases you know with every different curve here x y equal to

1, x y equal to 2, x y equal to 4. 

So, what happens these line x y equal to 4 you know just touches the optimal point these

constant line at the optimal point is it all right. So, there you see the optimal point is x

equal to 1 and y equal to 4. So, this is only a graphical explanation of the thing.
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On the other hand if we have kind of equality constraints. So, you can see here that

supposing a function f x is x 1 plus x 2. So, actually these red line you know x y f x equal

to x 1 plus x 2 function and supposing there is a constraint that is h x equal to x 1 square

plus  x  2  square  equal  to  4  an  non-linear  constraint.  So,  these  particular  circle  is

essentially is our x 1 square plus x 2 square equal to 4 constraint line that is your h x.

So, you see as the profit line moves you know it just touches the constraint line you

know in two points, one is b at the lower end and a on the other end is it alright and

interesting thing note also that the gradient of these function f x that is del f x will be

perpendicular to the line. An interesting question would be what would be the gradient of

the constraint line, see say for example, if I think of a point let us see here can you tell

me, what would be the you know the direction of del h x.

So, we have seen the direction of del f x so, one is del f x the gradient of the function f x

and the other could be the gradient of the function h x let us say in a point here. So, you

see at this point the del f x direction will be still this way because this is the line, but then

del h x will be in this direction right. So, this point we might remember which will be

useful later right.
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So,  if  we  understood  these,  then  let  us  move  ahead  the  constrained  non  non-linear

programming problems again are of two types the inequality constraints and the equality

constraints  right.  The  constraint  non-linear  programming  problems  with  inequality

constraints could be solved by using so, called KKT conditions or Karush -Kuhn -Tucker

conditions.

We shall discuss Karush- Kuhn- Tucker conditions in due course of time in our next set

of  lectures,  but  in  these  lecture  we  shall  see  how  we  solve  constraint  non-linear

programming  problems  with  equality  constraints  by  making  use  of  Lagrange’s

multipliers is it alright.
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So, what exactly is these Lagrange multiplier let us look at these. So, here we have an

NLP with  equality  constraints  the  objective  function  could  be  linear  or  non-linear.

Constraints  can also be linear or non-linear, but the constrains are equality type is it

alright. So, here is a general form maximize f x, x could be x 1 to x n subject to h i x is

equal to b i, i could be 1 to m.
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So, then we define a Lagrange function which is L x lambda is f x minus sum over h i h i

x minus b i is it alright. So, that is the general form of Lagrange functions. So, to explain



it little bit more supposing I have an objective function say maximize f x subject to say 2

constraints  h  1 x say equal  to  b 1 and h 2 x equal  to  b 2.  So,  what  would be our

Lagrangian  function  in  this  case?  So,  you see  we need  2  multipliers  lambda  1  and

lambda 2, lambda 1 for the first constraints and lambda 2 for the second constraint. So,

the Lagrangian functions will be x lambda equal to f x minus lambda 1 h 1 x minus b 1

minus lambda 2 h 2 x minus b 2 is it alright. So, that would be the Lagrangian function.

Now here the x is basically a vector you know it has could be a number of variables is a

function of x right. So, x could be x 1, x 2, x 3 it is a function of several x variables. So,

this is how we define Lagrangian function, now one interesting point to note here about

this negative sign out here you might find in some texts they use a positive sign is it

alright. 

Actually speaking you see what really happens that if I use a plus sign, the lambda value

will become then just the opposite of what we get if you take minus and since lambda is

a scalar quantity therefore, you know it will only affect the value of lambda, but it will

not affect the value of the unknowns that is or the decision variables that is x.

So, we get the same answers with regard to the unknowns, but with regard to the lambda

value we might get slightly deferent quantity. In the discussions that will follow in all

such problems we shall going to be using the negative sign in all such situations right.

So, that is how we define the Lagrangian multipliers now let us go come back to the

problem once again.
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We had maximize f x is equal to x 1 plus x 2 subject to h x is equal to x 1 plus x 2 square

equal to 4. So, I have already told earlier that you know this is our h x and these are our

profit  lines.  So,  you  can  see  2  points  a  and  b,  where  the  h  x  line  see  this  is  our

maximization function f x and this is h x. So, f x is just a tangent to the constraint line is

it alright.

So, there are two such points a and b so, can you tell which one is a optimal point for

maximization  and which  one is  the optimal  point  for  minimization  in  this  particular

problem right. If you look at it a little more carefully you can easily understand that point

b actually  corresponds to your minimum value and point a,  correspond to maximum

value is it alright. 

Now, another very interesting thing about the gradient now see there are two gradients,

one is the gradient of h x that is the constraint line, the other one is the gradient of the

profit line f x see what is happening supposing I take another point c this is the point I

was explaining earlier.

So, if I take a point c then at this point you see this is the tangent to the constraint line.

So, these will be the direction of del h x, but then these would be the direction of del f x.

So, you see the del f x and del h x they are not in the same direction. So, if you have to

add them you have to do vector addition, but look at point b in point b the del f x is in

these direction why because this is f x line this is where the gradient is increasing in this,



but then exactly in the opposite direction can you see. So, if this is a tangent at this point

for h x function would be the direction of del h x. So, del f x and del h x are just opposite

you know just in the opposite direction.

Whereas, at this point a del f x is already shown the del h x is also in the same direction

why because this is h x function this is tangent so, outwards will be the del h x direction.

So, if you really combine this facts you can find out that at the optimal point the del f x

and del h x that is the gradient of the function and the gradient of your the constraint line

they are parallel to each other right and they are actually you know can be added or

subtracted easily right. In fact, if I multiply by a suitable scalar then del f x and del h x

you know they will cancel each other.

(Refer Slide Time: 13:30)

So, exactly these factors have been retained in the next slide. So, I will come back to the

slide.
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So, you see here at the optimum point del f x is parallel  to del h x; that means, the

gradient of f x and the gradient of h x the objective function line and the constraint line

they are parallel to each other and other than the optimum point we can move up and

down to improve the objective function and equation you know these equation del f x

star at the optimum point minus lambda star del h x star equal to 0 because you see del f

x and del h x are parallel and they are linearly dependent on one another right.

So, they can actually be added or subtracted as the case maybe so, the with a suitable

value  of  lambda,  lambda being a  scalar  could  be positive  or  negative  we can  really

construct the equation that the gradient of the function f x objective function and gradient

of the constraint line together they should be equal to 0 that is del f x star minus lambda

star del h x star equal to 0 right. So, this is the essential idea of the Lagrange’s multiplier

where lambda is a Lagrangian multiplier.
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So, if we go back to that slide once again you can see once again that in the optimal point

that del h x and del f x that in the opposite direction at point b and they are in the same

direction at point a is it alright. So, this is a very important fact and we can make use of

them in our subsequent discussion.

(Refer Slide Time: 15:27)

So, already we have seen the Lagrangian function is L x lambda is f x minus lambda h x

minus b. So, if we take a partial differentiation then you know we get actually you know

del f x del x minus lambda del h x del x.



So, you know compare these with these del equation. So, del del x of f x minus del del x

of h x into lambda you know these would be equal to 0 is it alright. So, if extra reason

optimum point then this would be 0 and also the del L del lambda should be 0 also

because if you take del L del lambda then nothing will come out of f x and the here you

actually get back h x minus b equal to 0 or h x star equal to b which is the constraint line

itself alright.

So,  essentially  therefore  the  Lagrangian  multiplier  method  is  that  if  I  construct

Lagrangian  function  L x  lambda  equal  to  f  x  minus  lambda  h  x  minus  b  and  we

differentiated with regard to the x variable a partial differential and also with regard to

lambda and put them equal to 0 we get a set of equations and if we solve them the value

that you get of x out of them is going to be our optimum value and these would form a

set  of  necessary  conditions  for  non-linear  programming  problems  with  equality

constraint is it alright.

As  a  special  case  you  know I  mean  you should  also  remember  that  these  are  only

necessary conditions. So, special cases are those where you can also tell about convexity

or concavity of the function as the case maybe because you know if you really want a

maximum the  function  should  be  concave is  it  not  the  objective  function  should be

concave so, that has to be really ensured that has to be really ensured.

So, in this particular case in the f x it is a x 1 equal to x 2 is a linear function and these

objective function is really both convection concave function. So, both maximum and

minimum could be found out that should be remembered. So, the Lagrangian’s multiplier

by taking partial  differentiation equating to 0 that would really give us the necessary

conditions the sufficiency conditions have to be separately evaluated as well right so,

these much has to be remembered.
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 Now, let us look at the problem once again so, this is our example this is the Lagrangian

function f x minus lambda h x is equal to 0 that is x 1 plus x 2 minus lambda x 1 square

plus x 2 square minus 4 not 0 that is the Lagrangian function.

(Refer Slide Time: 18:40)

So, now, we equate to 0 the partial differentiation. So, what is the partial differentiation

of these particular function can you workout, who will work out. Now, therefore, these

values what will be the value, say del L del x 1 what will be del L del x 2 and what

would be del L del lambda so, this 3 values can you workout.



The first one you know if you differentiate with respect to x 1 then what we get, we get

the first term we get 1 and the second term nothing, third term we get minus 2 lambda x

1 and nothing from the rest. So, that should be equal to 0, similarly here we get 1 minus

2 lambda x 2 equal to 0 and the third term if I differentiate we simply get minus x 1

square plus x 2 square minus 4 equal to 0 right.

So, these are simple partial differentiation and through this partial differentiation we can

get these 3 sets of equations. So, let us look at it once again that is these you know these

is how we find out the partial differentiations.
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So, the partial differentiations would be these so, del L del x 1 1 minus 2 lambda x 1 del

L del x 2 1 minus 2 lambda x 2 is put to 0 and del L del lambda is minus x 1 square plus

x 2 square minus 4 equal to 0. So, if I combine them what are the equations that we get 1

minus 2 lambda x 1 equal to 0 1 minus 2 lambda x 2 equal to 0 and x 1 square plus x 2

square minus 4 equal to 0 is it  alright. So, if we have to solve look here we have 3

unknowns and we have 3 equations.

So, easily we can solve in fact, you can little bit of you know if you really look then from

first equation we get x 1 equal to 1 by 2 lambda and from here we get x 2 equal to 1 by 2

lambda. So, what we can do, we can put them into these equation and then 1 by 2 lambda

whole square plus 1 by 2 lambda whole square we shall put equal to 4 right. So, this is if



you solve them we get the value of lambda and then you can put them in x 1 and x 2 and

we can get a value of x 1 and x 2.
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So, let us look at them so, this is how we solve. So, these equal to 0 so, x 1 equal to 1

minus 2 lambda x 2 equal to 1 by 2 lambda and by putting those things here we get 1 by

4 lambda whole square plus 1 by 4 lambda whole square is equal to 4 so; that means,

lambda square equal to 1 by 8 because this will give half 1 by 2 lambda whole square

equal to 4. 

So; that means, you know lambda square you take that side and 4 you take this side is 1

by is it alright. So, we get lambda square equal to 1 by 8 so, this exactly that is what

exactly we have got lambda square equal to 1 by 8.
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So, if we try to solve them further then we get that 1 minus 2 lambda is 1 equal to 0 and

lambda square equal to 1 by 8. So, these would be the possible value of lambda plus

minus 0.3535 putting that equal to x 1 and x 2 we get plus minus 1.414. So, we have

been able to solve the value of x 1 and x 2 in this particular problem.
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And if we examine the graph, we can say that you know the really speaking if you really

look at this graph carefully, then you see the point b actually x 1 equal to minus 1.414

and x 2 equal to minus 1.414. So, that f x is these value and at point a x 1 equal to 1.414



and x 2 equal to 1.414 is it alright. So, obviously, it is a original problem was one of

maximization. So, the maximum value would be obtained that point a and that would be

our optimal solution with f star x equal to 2.818 right is it alright. So, that would be the

value 2.828 that will be the functional value right.

So, that is how we can solve those problems. Once again remember that we form the

Lagrangian function with make partial differentiation, solve them. But then you know

since the Lagrangian multiplier that differentiation really gives unnecessary conditions

only; we also have to remember about the maximum or minimum value of the function is

ensured by either the second derivative conditions or if we know the pattern of the graph

or if you know the concavity or convexity of the graph. Then from that knowledge we

have to really ascertain the sufficiency part of the problem right.

So, once we understood to in order to make our knowledge more clear let us look at

another problem.
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So, this particular problem we have maximize a function of x y equal to x square y

subject to x square plus y square equal to 1. So, you see both the, your constraint and the

objective function they are actually non-linear right. So, really speaking the objective

function here is a function x square y you can see; obviously, you can you have to prove

it  otherwise,  but  we see  that  from the  nature  of  the  function  that  this  is  a  concave

function right. So, because it is a concave function the maximization should be possible.



So, we first form the Lagrangian function with the 3 variables x y and lambda that is x

square y minus lambda x square plus y square minus 1 is it alright that is the first task.
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Then we make those 3 differentiation with respect to x with respect to y and with respect

to lambda the with respect to x what do we get, 2 x y minus 2 lambda x equal to 0 with

respect to y we get x square minus 2 lambda y equal to 0 and with respect to lambda we

get minus of the constraint line x square plus y square minus 1 equal to 0. 

So,  these  are  the  3  equality  constraints  we  have  to  solve  to  find  the  values  of  the

unknowns and the Lagrangian multiplier.
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So, what we can do essentially from these 3 constraint lines, that is since 2 x by taking

common y y minus lambda equal to 0. So, it automatically means that either x equal to 0

or lambda equal to y for the time being assume x equal to 0. So, if x equal to 0 then you

know from the second equation you can see the 2 lambda y equal to 0 is it and since

lambda equal to y then both lambda and y will be 0 so, everything becomes 0.

If everything is 0 then how can these 0 square plus 0 square minus 1 will never be 0. So,

x cannot be 0 is it alright. So, essentially what we have just now seen that x cannot be

equal to 0 because if x equal to 0 then we cannot solve the system equations. So, if x not

equal to zero; that means, y equal to lambda right so, this second part will come. So,

from the second part we can put that in the third constraint that is x square plus y square

equal to 1. So, we get basically that x square you know or lambda equal to y.

So, you know we put not in this we put in x square minus 2 lambda y equal to 0. So, if I

put lambda equal to y then I get x square minus 2 y square equal to 0 so, that is x square

equal to 2 y square right. So, that is what we get now as you get these we can put it here.



(Refer Slide Time: 29:15)

Then we get 2 y square plus y square equal to 1 or 3 y square equal to 1. So, y will

become plus minus 1 by 3 root over and from here x will be plus minus root over 2 by 3.

So, this is very simple really so, once we get these then we can.
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See this is our original problem so, these are the 4 possible solutions what are they plus

plus minus plus plus minus and minus minus right. Now, since the problem is one of

maximization it is and we have an x square. So, which combination should we take is

very clear that we should take the first two combination that is these or these because x



square will be then 2 by 3 whether you take these or these and y is root over 1 by 3 that

would give the maximum possible functional value.
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So, therefore, we see that this is our solution and the objective function value is 2 by 3

root over 1 by 3, right. We can also obtain the Hessian Matrix to predict the nature of the

objective function then. 

So, thank you very much and in our next class we shall see how these KKT conditions

are used for inequality constraints.


