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So,  for  our  course  Selected  Topics  in  Decision  Modeling,  today we are in  our  25th

lecture. So, if you recall we were discussing non-linear programming right. So, today we

are going to discuss the Numerical Methods for Unconstrained NLP. 

So, now the numerical methods for unconstrained NLP you know you have seen that

there are several methods in which we actually solve non-linear programming problems.

So, let us see where the numerical methods actually come in.
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So,  see  if  we have  let  us  say single  variable  unconstrained  non-linear  programming

problem, say we have a single variable differentiable function f x, and to find out the

global optimal solution x equal to x star, we have the necessary and sufficient conditions.

So, you know the we take the first derivative put it equal to 0 at the given point that is the

optimal  point,  but  that  alone  is  not  sufficient  no  that  is  necessary  condition.  The

additional  constraint  that  we  have  to  check  for  sufficiency,  is  whether  the  second



derivative value is I it  is less than 0 that is for maximization and greater  than 0 for

minimization. So, this is the simple thing that we have already seen.
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Then sometimes if the second derivative is difficult to obtain and also the first derivative

is available, but you know not easy to solve, then we have a method called the bisection

method and we have discussed it that method basically meant that we take 2 values x you

know underline and x bar. And you know they should be between 2 extremes. So, that

the extreme point lies in between that you have to ensure that these are the two extreme

points one on one side and the other on the other side.

Then through the method of bisection and by evaluating the gradient and really noting

whether the gradient is on one side or the other based on which we keep you know the

averaging those two values and looking at  which side it is on and then reducing the

search space and finally, obtaining the extreme point. So, that was the bisection method.
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But moment we had multivariable then you know it is not easy to obtain the first or

second differential, that time we had two more concepts we have introduced that was the

concept of gradient and the concept of Hessian matrix. 

The concept of gradient is actually these are all first order partial derivatives, we equate

them to 0 at the x star, which is our maximum or minimum that is an extreme point. But

then additional the sufficient condition is that, the second order partial derivative that is

the Hessian matrix,  you know that matrix should be positive definite for the relative

minimum and negative definite for relative maximum is it alright. 

So, when will take that Hessian matrix and we find the eigen values, they will actually

determine  the  you know the  positive  definiteness  or  the negative  definiteness  of  the

matrix.

So, this far we have already seen. 
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Now, there was another very important method that was the gradient search procedure,

they are the real advantage is that we really do not need the second that is the Hessian

matrix to be computed. So, if we know the concavity or convexity of the you know the

function as the case may be, concavity for maximization then you know we take the

iterative step that, x dash equal to x dash plus t star the gradient of the function at the

given point. And you know keep finding that starting from a point x, I mean trial solution

x dash you know move towards the gradient. 

The essential idea is that if we are having a maximization problem, then as you move on

the  gradient  should  go  up right;  with  increasing  gradient  that  means,  the  increasing

function value move towards the extreme point and keep modifying your trial solution

till you reach almost at the extreme point. So, that was the gradient search procedure is

all right.
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Now, sometimes we have what is known as the numerical methods also. So, supposing

we equate the f dash x that is the first order derivative to 0, but then it may not be easy to

solve that particular resulting equation because it may be having higher order terms right.

So, what we can do? We can make use of numerical methods. So, in these particular

lecture we are going to discuss two such methods; the Newton’s method and the Regula-

Falsi right. 

Once again why do we need this numerical methods, this numerical methods are required

to solve unconstrained non-linear programming problems, particularly when we equate

the gradient to zero, but then the resulting equation is of higher order and you know we

need to it is difficult to solve directly. So, let us see the procedure.
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So, really the procedure is like this that, we consider the first derivative of the function

that is f dash x f dash x as a straight line, at a given point x k and then obtain the next

point at x k plus 1 where k is the current iteration. So, what we need to do? We need to

find out the first derivative and we need to find out the second derivative at that point

this is all right. So, we take a trial point x dash k, and then find out the first derivative

and the second derivative and you know these two are helping us to iterate from a given

point to the next point.

So, that is that is the Newton method and then we have x k plus 1 value you know and x

k plus 1 equal to x k minus f dash k x k by f double dash x dash k where f dash x is our

first derivative and f double dash x is the second derivative right. So, that is the first

process iterative procedure and what we should ensure? We really should ensure that the

function value is really decreasing,  if  we are finding a minima and function value is

increasing if you are find a maxima. 

So, it may so, happen that you know if it is not happening obviously, the process has

come to a point where it is not helping anymore right. So, that is the Newton’s method.
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Now, let us see an example or before that let us look at the how exactly it is happening.

So, supposing we plot a f dash x. So, you know this side is x and this side is the function.

So, see this side is our x and this side is our function, that is f dash x right. So, let us say

this is our plot now assuming just arbitrarily so, that let us say this is where our x star

that is the optimal point lies. 

So, what happens you know if I take a given point say what is this point? This point is

our x k that is our trial point. So, actually this is our x k value at this point because this

side is x. So, this is our x k value.

Now, if I take the gradient you know tangent of this f dash x and then take the slope that

is nothing, but f double dash x k is it not? Because that is the second derivative because

this line is first derivative f dash x, and if  we take it  slope at a given point x k ah;

obviously, that should be our second derivative. So, that is the equation written here that

is f double dash x k is f dash x k my x k minus x k plus 1 you know. 

So, this is our new point x k plus 1. So, this side is you know what is this value x k minus

x k plus 1 and this side is our f dash, because this is f dash value at this point this much is

our f dash x k value that is the functional value. So, this is can be the way by which we

can define the f double dash x k.



So, a little manipulation you know you can find out that x k plus 1 because x k minus x k

plus 1, take it that side is f dash x k by a double dash x k and then just rearrange the

terms  and then  we get  the  new iteration  value  is  the  old  iteration  value  minus  first

derivative by second derivative at that point is it alright. 

So, I hope you understood the method how exactly this Newton’s method really works.

So, if you have understood the method, then let us go ahead and solve problem and then

see how exactly it works.
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So,  here  is  our  problem that  solve  numerically  the  optimal  point,  suppose  we  have

maximize f x 12 x minus 3 x to the power 4 minus 2 x to the power 6. So, at a given

point if I take the derivatives, that is the first and the second derivative what will be our

first derivative? The first derivative will be you know equal to f dash x if you take then

12 x it should be 12 minus 3 x to the power 4. 

So, 12 x 2 cube, 2 x 6 minus 12 x to the power 5 is it alright. So, the same thing is

written here, 12 into 1 minus x cube minus x 5. So, if this is our first derivative what will

be our second derivative? Look here minus 12 x cube so, minus 36 x square and minus

60 x to the power 4 alright. So, that is how we have found the first derivative and the

second derivative.



Now, to satisfy the necessary condition, we have to put f dash x equal to 0 right so, that

should be our extreme point. Now in the question is that this particular value is not easy

to find out, what should be the value of x at this point because we have put it equal to 0.

So, finding the value of x is difficult analytically. 

So,  that  is  where we are trying to  find out  through Newton’s method the numerical

method. Not only that we have to ensure see one thing is ensured already that the this

one is a negative quantity. Can you see that? That whatever be the value of x x the x

square and x to the power 4, they are positive so, since we have minus 36 x square minus

60 x to the power 4. So, these has to be a negative quantity.

So, since the second derivative is negative,  that actually ensures the concavity of the

curve; that means, we have an extreme point which is a maxima alright. So, that we have

already ensured. So, after  we have ensured that, now the question is that what is the

value of x if I put f dash x equal to 0 that is our real challenge now.

Now, let us see how it actually happens.
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So, what we do we find the first derivative at this point which is 12 into 1 minus x 1

cube, minus x 1 to the power 5. So, it comes to minus 12 right and what is f double dash

x 1? So, it will be minus 96 for a given point. See we started an arbitrary point x 1 equal

to 1 right. So, suppose we arbitrarily start at a given point, now for that particular point



the f x value is a went the question is why do we start with 1? Because first of all we see

that by putting 1 we at least get a positive value and if we by looking at the nature of the

function, if I would have put 2 ah; obviously, the value would have been negative. So,

we have to have a good starting point that is an important thing to begin with. 

Now, we find the first derivative and we find the second derivative and then we can

iterate and find out the next value of x 2, which comes to 1 minus you know the f dash x

by f double dash x. So, that is equal to 1 minus minus 12 by minus 96. So, 1 minus 1 by

8 equal to 7 by 8 right. So, that is what you get and which is 0.875. 

So, this is our next iteration look here if you put 0.875, then our f x value comes to 7.844

right slightly better value is obtained. So, from a value of f x equal to 7, we have now

come to 7.844. So, that leads us for our next iteration.
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So, again we move ahead now, this time we have taken our next value x 2 is 0.875 if you

recall our functional value was 7.844. So, again if we actually obtain at this point the first

derivative  and  the  second  derivative,  the  first  derivative  comes  to  minus  2.194  and

second derivative comes to minus 62.733 by putting the x 2 value. 

So,  again by the similar  computation,  x 3 comes to 0.840 right.  So, that is our next

iteration value and what is the functional value here? That becomes 7.884 right. So, from

7.844 we have improved it further to 7.884.
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Let us move further at the next iteration, now we have used what is known as the an

excel sheet and what we did we actually put those values and you know use that same

iteratively similar calculations. So, we just copied number of times, the x obtained from

the first becomes the x for the second and x for the second becomes x for the third, for

the third whatever comes out at the end goes for fourth like this like this. So, that is how

it progresses.

So, initially we start with a value of 1, then 0.875 then 0.84 up to this point we have seen

and then further if you go, we get 0.83764 and subsequent look at the f dash x value. So,

you know it starts from minus 12 to minus 2.19 something, minus 0 point 1 3 and finally,

minus 0. 000. So, you see with subsequent iteration the first derivative is nearing as 0

value is alright. 

So, you know it x is also slowly merging to a given value. So, may be after these many

iterations probably we can say that for this value that is 0.83763 you know probably is a

good approximation for the fx value of 7.83946, then iterate further, but we have to see

whether we are really improving is alright. So, that is the Newton’s method.
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So, to have a review of what exactly we have done let  us take another problem and

quickly see supposing we have to solve numerical by Newton’s method maximize fx

equal to 1 by 4 x to the power 4 plus x square minus 4 x, again take the first derivative

and the second derivative. So, the first derivative f dash x equal to you know df d x is x

cube plus 2 x minus 4, and the second derivative become 3 x square plus 2.

So, that was the first and the second derivative and after obtaining that, you know the

necessary  condition  the  first  derivative  should  be  equal  to  0  that  is  the  necessary

condition. So, again it is difficult to solve it. So, we follow what is known as a numerical

method. So, what is that numerical method?
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Once again let  us see that by Newton’s method in the first iteration,  what we do we

evaluate the f dash x let say again we start with a value from 1 and fx is minus 2.75 and

here you know this was the minimization function. So, we find that the new value of x 2

comes out to be 1.2 right and functional value from minus 2.75 goes down to minus

2.8416 alright that is the first iteration.
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Then  subsequently  using  this  value  we  move  to  the  second  iteration  and  again  we

compute the first derivative and the second derivative and when you take the ratio, then



we get 1.1797. And the functional value move up move down from minus 2.8416 to

minus 2.84391ok.
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So, that is the second and again using excel we have tabulated the value moves from 1 to

you know 1 to 1.2 1.1797 and 1.1795 is alright.
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So, at that level look at the f dash value is almost 0 right nearly almost 0. So, that is how

we find our optimal solution that is x star equal to 1.1797 and fx equal to fx star equal to



minus 2.84291 is alright. So, this is a kind of method through which we can find out the

functional value you know the extreme value by the method of iteration.

Now, see the other method which is known as the Regula-Falsi method. So, again this is

another method where the g dash x the first derivative is considered as a straight line is

alright as a straight line and the interpolation is made use of to find the value of x at for f

dash x equal to 0.

The advantages with there is no need to calculate the second derivative right, but then we

need to have 2 starting point a and b, such that the f dash a is negative and f dash b

should be positive. So, see there is a function f dash x for a value of a, the value is

negative for value of b f dash x is positive. So obviously, f dash equal to 0 should be

somewhere in between so, that we can interpolate between them.

So, this is the interpolation equation that we have that x equal to b minus f dash b, b

minus a f dash b minus f dash a right. So, if you do a little bit of manipulation you know

it will be like this, x equal to f dash b minus f dash a and on top what you have? B into f

dash b that is the first term minus b into f dash a that is the second term and then if you

again see here then first term is b into f dash b and the second term is you know I am

writing it here plus a into f dash b alright.

So, look here these b f dash b and b f dash b they cut each other. So, what is remaining? a

into f dash b minus b into f dash a, by f dash b minus f dash a. So, if I put it here that is

how we get that from the interpolation equation we have been able to find an expression

that is x equal to a f dash b, minus b f dash a by f dash b minus f dash a. So, is nothing

you just calculate this you will get here is alright.

So, now the question is that resulting x does the iterative value, you compute and then

see whether it is negative or positive. If it is a negative value then replace the x a by x

because a is the negative.  So, a should be now replaced by x. So, it is like this. So,

suppose there is a line, suppose this value is 0 this is a and this is b, a is negative b is

positive alright. Now, what happens suppose we get x here so, if we get x here npw x

will become a. So, this will become a. So, this is our new a, but on the contrary suppose

this is a and this is b and we get x here, and x will be our new b this is alright.



So, now the iteration should be here or in this case it should be here. So, like these you

know with every subsequent iteration, you are nearing the point that is the 0 point which

you are trying to find out. So, that is the iterative method in the Regula-Falsi fine. So,

now, that we know what it is let us see an example.
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So, let us take an example that f dash x equal to x cube minus 2 x minus 5 equal to 0 we

take 2 points 2 and 3 arbitrarily knowing that, if I put 2 we get 2 to the power 3 is 8,

minus 4, minus 5. So, we know f dash 2 equal to minus 1 and if I put 3, then x 3 to the

power 3 is 27 minus 6, minus 5. So, we get f dash 3 equal to 16. So, 1 is negative and the

other is positive. So, we have one value on negative another value on the positive side

and then we iterate what is the iteration state? X 1 is a f dash b b f dash a by f dash b

minus f dash a.

So, we already found f dash 2 and f dash 3. So, 2 into this minus 3 into this and please

note that the function itself is f dash x. So, we there is no need to differentiation because

that was the function itself right. So, we find equal to 2.058 and the new value for the

function f dash 2.058 is a negative number. So, since you know as I say in the scale this

side is somewhere in between. 

So, this is negative, this is positive, this is a, this is b. So, we get an ex which is negative

so; that means, now this should be our new a fine that should be our new a. So, what is



our new a going to be? It should be 2.058 right. So, then we should iterate between 2.058

and 3 right.
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So, again we do that. So, again same thing we find f dash 2.058 which is again negative

and f dash 3 is positive. So, we find again through that at the next iteration we find x 2

value is 2.081 and when you put that we find a another negative value. So, that should be

our new a is it alright.

So, once again we followed this is nothing, but the second iteration and at the second

iteration by following similar procedure, we found a is 2.081 and b equal to 3.
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Let us move further at the next iteration, again we put 2.081 we find minus 0.1501 and

that equal to 16 and again the computation shows 2.089. So, the new value is minus 0

0.06177. So, that is what we get after 3 iterations the x equal to 2.089 and f dash x equal

to minus 0.06177 is it alright. 

So, that is how the Regula-Falsi method calculates the f dash x equal to 0 it is all and

finds  the  optimal  point  is  it  alright.  So,  we  have  seen  the  numerical  methods  for

unconstrained optimization in this particular lecture right.

Thank you very much.


