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Solving Unconstrained NLP

So, in our course Selected Topics in Decision Modeling, we are now in our 24th lecture

that is Solving Unconstrained non-linear programming problems. So, that is our lecture

that is solving unconstrained non-linear programming problem.
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Now, you know in our previous lecture if you recall, we have seen that whether so, in the

multivariable unconstrained NLP problems, we need to find out the gradient. We put the

gradient equal to 0 and from those gradient,  you know we also find out the Hessian

matrix,  then  we check whether  the  Hessian  matrix  is  a  positive  definite  or  negative

definite. And based on that, we try to find out the maxima or minima of this particular

function right so, based on the nature of the Hessian matrix. How do we find out the

extrema maxima and minima, by putting the gradient equal to 0.

So, let us take some examples and see what kind of difficulties can come while following

this procedure. So, here is a function before us that is f Y equal to y 1 square plus y 1 into

1 minus y 2, plus y 2 whole square minus y 2 y 3 plus y 3 square plus y 3. So, if we if we

find the gradient that is del del y 1 for the function, then the what are the terms which



will be useful here. So, as you can see that is the first term that will be useful, the second

term will be useful and that is all. So, those are the terms that will be useful. So, in the

first term what you get is 2 y 1 and in the second term 1 minus y 2. So, that is the del del

y 1 of a del f del y 1.

So, the second term again you know what are the terms that will be useful that is you

know because del y 2. So, it is the second term, which will be which will be required the

second term, then the third term, the fourth term that is all. So, you know the second term

will give us minus y 1, the next term 2 y 2 and here minus y 3. That is very simple partial

differentiation and for the del del y 3 again you know we see the only the last few terms

that is the last 3 terms will be useful. So, you know again you see that this term this term

and this term they will be useful. So, it becomes minus y 2 plus 2 y 3 plus y.

So, when you when you put them all we get the gradient matrix right del f Y, 2 y 1 plus y

1 minus y 2, minus y 1 plus 2 3, y 2 minus y 3 minus y 2 plus 2 y 3 plus 1. So, that is the

gradient right.  So, after  the gradient what we do? We must have the next that is the

gradient should be set to 0.
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So, that is what we have done here the gradient is set to 0, that is the first term basically

it means that set the 3 terms equal to 0 separately right. So, if you if you set this terms

you know separately equal to 0, then you know how do you find out the values of y 1, y



2 and y 3.  So,  it  is  a  very simple  problem really  all  we have  to  do is  solve set  of

simultaneous equations, not much challenge here.

So, quick quickly if you can see if you if you add the double of the second term with the

first term, then you know this y 1 gets cancelled then we get you know 4 that is 3 y 2, 3 y

2 minus y 3 3 y 2 see that is what we are doing we are adding the double of the second

term. So, that is 4 y 2 minus y 2 plus 3 y 2 minus 2 y 3 plus 1 equal to 0. So, what we

have do we done? We have doubled this and added with the first equation. So, it becomes

4 y 2 minus y 2 3 y 2 minus 2 y 3 plus 1.

Now, this n these third equation you can also add. So, if you add then what do we get?

We get 2 y 2 minus. So, this one is plus. So, this will be plus also 1 and 1 2. So, this will

be 0. So, what you is the value of y 2? It becomes minus 1 right. So, very quickly we got

y 2 equal to minus 1. So, you know using them. So, minus of minus 1 is again plus 1 so,

2 y 1 plus 1. So, from the first equation we get 2 y 1 plus 1 again plus 1 equal to 0. So, y

1 is also minus 1 right. 

So, we get y 1 is minus 1 y 2 also minus 1. So, put them in the second equation. So,

minus of minus 1 is plus 1 and plus 1 minus 2. So, 1 minus 2, minus y 3 equal to 0, that

is what we can write from the second equation. So, that gives y 3 also equal to minus 1

right very simple just this set of simultaneous equations you can solve and we get y 1, y

2, y 3 all equal to minus 1.
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So, that is exactly what we have seen here those 3 simultaneous equations as solved and

we get y 1, y 2, y 3 that is equal to minus 1 minus 1 and minus1.

Now, additionally you know we have to find out also the Hessian matrix right. So, you

can you can do that as an exercise I am not doing it here; supposing we find the Hessian

matrix of those you know things. So, basically you know this is our gradient so, that

gradient if you really do you know say actually these are the gradient.

So, please look that del f, del f del not d del f del x 1 equal to 2 y 1, plus 1 minus y 2. So,

if you if you take one more time sorry not x 1, y 1. So, if you take one more time del del

y 1 this is written x 1, but they really should be all x y 1. So, if you if you take them then

it should be the value should be 2 right. So, that will be our Hessian matrix. So, that

should be 2 right. So, that is what it is. So, actually this kindly correct this. So, in so, that

is what we get that that is going to be our Hessian matrix.
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Now, once we have found out the Hessian matrix let us try to find out the eigen values.

So, eigen values again as this is our Hessian matrix. So, what we have to do is, we have

to you know A minus lambda I  equal  to 0,  that  is  our characteristic  matrix  and this

characteristic matrix has to be a characteristic equation. 

That  characteristic  equation  if  you really  put  then  we get  the  Hessian  matrix  minus

lambda 0 0, 0 lambda 0 0, 0 lambda equal to 0. So, we get this matrix 2 minus lambda



minus 1 0, minus 1 2 minus lambda minus 1 0 minus 1 2 minus lambda equal to 0 this is

alright. So, that should be equal to 0 to find out the eigen values.

(Refer Slide Time: 09:55)

Now, what it is? Now, you know this is this one. So, how the multiplication happens? It

should be then 2 minus lambda that is this term into 2 minus lambda into 2 minus lambda

minus minus 1 into minus 1. So, basically that is how we proceed. So, we take this one

and this one.

So, 2 minus lambda so, this is this one and 2 minus lambda into 2 minus lambda minus

minus 1 into minus 1 that is the first term. The second term what will be our second

term? The second term will be starting with this and it should take these terms, but please

remember there is a co factor that should be a negative value. So, negative should be

thing also. So, that is what has been done in the case of the second term. 

So, all these are first term, this is first term. Now, in the second term you see what we

have done, we have taken the minus of minus of that is very important minus 1 into that

negative that that is that usually come for the second term. Minus 1 into minus 1 into 2

minus lambda minus minus 1 into 0 right and in third term what will be the third term?

The in case of third term we should take this one and this one. So, plus 0 into dot dot dot

because minus 1 into minus 1 minus 0 into 2 minus lambda, but there is no need to write

it, because anything multiplied by 0 will be 0 only alright. 



So, when you combine them all, then we get you know 2 minus lambda can be taken as

command and all of these terms. So, you know 2 minus lambda into 2 minus lambda. So,

it will be 4 plus lambda square minus 4 lambda minus 1, which is coming from here. So,

that is minus 1. So, all of these are first term, then in the second term also you know this

is our second term if you if you see that second term. In the second term if you take out 2

minus lambda then this term is 0, then we really have a minus 1 here. So, all that minus 1

will come inside. 

So, this is 3 minus 1. So, it will become 2 and 2 and 2 minus lambda can be taken

component right. So, finally, we get this kind of equation, 2 minus lambda can be taken

component  right.  So, finally, we get these kind of equation 2 minus lambda,  lambda

square minus 4 lambda plus 2 equal to 0.

Now, this problem was simple so; obviously, we could easily get into this kind of forms,

but in all  problems it  may not be so, easy, but then I know we have to find out the

lambdas  by  some way or  the  other,  and that  is  a  major  challenge  for  such  kind  of

problems. So, we should remember that right.
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Now, once we find out, now you know this can be factorized the idea is that this into this

is2. So, 4 should be divided in such a way that the multiplication is 2. So, that is 3.41 and

0.59. So, we have 2 minus lambda, lambda minus 3.41, lambda minus 0.59 equal to 0.

So, we have 3 different values of lambda and those values are 2, 3.41 and 0.59 right. So,



we have now the 3 lambda values. So, what is your conclusion about the eigen values?

The eigen values are you know all found to be positive. So, since the all the eigen values

are positive, the Hessian matrix be then positive definite right we have a positive definite

Hessian matrix and the conclusion therefore is that the point y 1, y 2, y 3 minus 1 minus

1 minus 1 is a minima right.
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So, minima has been found, but is it a global minima? We may not know because the

function has to be convex or we have to know the shape of the function right. So, that

also is additional task that is required only thing we found a minimum, but it can be local

minima as well right.

So, you see sometimes if the if the nature of the plot is of this type, suppose we found

this point; obviously, it is a minima, but look here there are other minimas as well and

you know if you look at this, then this point is you know having a lower value. So, these

minima is could be a local minima and may not be a global minima right. So, that has to

be remembered fine.

So, that is how we found out by with the help of the gradient and the Hessian matrix, and

the eigen values of the Hessian matrix we are able to solve the unconstrained problem. 
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But then there could be the difficulties what are they let us see. See what really happens

that the gradient we have seen, it was not easy to really put those gradient values and put

two 0’s and then finding Hessian matrix and all those things you know. So, there should

be a procedure, where it even if you know we are not able to put del f x equal to 0, you

know you know there should be a method by which we can approach and we can do with

the help of gradient search itself.  So, that is the technique that is called the gradient

search procedure for unconstrained NLP.

The search procedure keeps moving in the direction of the gradient until it reaches an

optimal  solution  x star, where the gradient  equal  to  0 right.  So,  from a current  trial

solution,  procedure  does  not  stop  until  fx  stops  increasing  right.  So,  supposing  this

procedure is shown for a maximization problem. 

So, supposing we have a maximization problem and we find a gradient and then we

know that if we go on the direction of the gradient you know and at a at a given point,

that we have got a gradient value and you know we see the fx is increasing then we

recalculate the gradient for a new trial solution, for there is a value called x dash.

Where x dash equal to x dash plus t times the gradient; where t star is the positive value

of t that maximize the function at that point right. So, it is 3 times the gradient if you add

with the current  you know trial  solution value,  the functional  value at  that  point  we

maximize is it alright.



So, that is how we do and these you know these f x dash, x dash is the current trial plus

the t times the gradient is nothing, but the fx where see please remember this is a multi

valued. So, x is not one variable, it is a number of variables. So, where individual values

xjs or xj equal to xj dash plus t times del f del x j at x equal to x 1 and where do you stop

when the gradient is lower than for each individual gradient of individual x i js are less

than equal to epsilon where e is a small tolerance.

So, it is a standard gradient search procedure, basically we find a current trial solution

and we find out the gradient and we add the gradient with regard to the t and see the

functional value at that point, and that we maximize to find t and then you know change

the xj’s in that direction and make it our new trial solution. So, that is the procedure we it

will be very clear once you see a problem, then we can we revisit these once again if we

have some doubt.
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So, initialization select an epsilon small value, a trail  solution x dash and choose the

stopping rule. Iteration x dash equal to x dash plus t star the gradient at x dash, where t

star is the positive value of t that maximize the functional value at that x. Now, express

these you know this functional value as a function of t by setting, xj equal to xj dash plus

t del f del x j at x equal to x dash for each x and then substituting these expressions into

fx. So, that is how the procedure goes.
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So, how it is let us see and; obviously, we have the stopping rule that the gradient that the

that the partial derivative, for each variable should be less than equal to epsilon. And if

so, stop with the current x equal to x dash as the desired approximation of an optimal

solution else perform another iteration. So, that is the method.

So, once you know the method, as I said I will revisit the method may be one more time

after we see how a problem is solved.
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So, supposing we need to maximize a function, which is f x which is where x is basically

2 variable. So, x 1 and x 2 and the function is 2 x 1 x 2 plus 2 x 2, minus x 1 square

minus 2 x 2 whole square right. So, if you really want a you know to find this problem

and details  further you can see the Hillier  Lieberman book you know the operations

research where the problem is solved as well. So, I have taken it from the Hillier and

Lieberman book.

So, what we do? We first find out the gradient gradients or the del del x 1 and del del x 2

of the function. So, what will be the del del x 1 of the function? You know very clear it

should be 2 x 2 minus 2 x 1 and what is del del x 2 of the function? 2 x 1 plus 2 that will

come from here and from here minus 4 x 2. So, that is the first step find the gradient

right. So, these 2 are obtained. So, this part is very clear now, go to the next step.
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So, after that what we do, supposing we arbitrary start at a point 0 0, we start at a origin.
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Because see the if you look at the function, the value of the function is 0 at the origin

right because x 1 0, x 2 0 the functional value is 0 and if we are going to get a positive

value, we assume that we have a positive value which is higher than the 0 value right.
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So, that is how we start at the origin.

Now, already found that the partial  derivatives and their gradient at this point can be

obtained as at this point 0 0, if you put that is that these are our del f del x 1 and del f del

x 2. So, if we put x 1 equal to 0 and x 2 equal to 0, then the first value becomes 0 and the



second value becomes 2. Because x 1 0 and x 2 0 that remains 2 these becomes 2. So, the

gradient at this point is 0 2 right. So, we have found the gradient at that given point 0 0 is

alright. So, we found the gradient right now what we do with this gradient.
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Now, what we do see look here this is our x 1 and x 2. So, please recall please if you if

you recall what was our gradient. Gradient was 0 2 right so, 0 for x 1 and 2 for x 2. Now,

the point we started the trial solution is 0 0 right. So, basically x 1 equal to 0 and gradient

for x 1 is 0 right. So, gradient for x 1 equal to 0 and x 1 equal to 0, similarly x 1 equal to

2 and gradient x 1 equal to x 2 equal to 0 and gradient is 2. So, these are the things.

Now, if we move in the direction for t distance, then what will be the new value of x 1

and x 2 in terms of t? It should be 0 plus t star 0 that is 0 for x 1 and x 2 will be 0 plus t

star 2 because gradient is 2 equal to 2 t. So, 0 and 2 t are the new values for x 1 and x 2

and what is the functional  expression? This is our functional  expression. So, if these

functional expression value we find out for 0 and 2 t, that is our new functional value.

So, what it will be? 2 into 0 into 2 t plus 2 into 2 t minus 0 square minus 2 into 2 t whole

square. So, these comes to 4 t minus 8 t square.

See look here what we found. So, graphically if you want to know then we had a point.

So, this side is x 1, this side is x 2 right. So, we are here, this is our initial trial point 0 0.

Now from 0 0, we have come to you know a new point which is 0 2 t. Why? Because the

gradient is 0 2, 0 for x 1 so, we are not moving in that direction and 2 for x 2. So, we



know that if we move in this direction our functional value is going to go up, and the

new functional value in terms of t is 4 t minus 8 t square that is all we have found right.

So, I hope you understand.
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So,  now with  that  knowledge,  we  try  to  maximize  these  value  the  functional  value

because that is all we try to do how do we do? We differentiate. So, as we differentiate

this 4 t minus 8 t square we find the 4 minus 16 t equal to 0. 

So, we find a value of t which comes out to be 1 by 4. So, you see how much we move to

the direction is you know is 0 in the x 1 direction and 2 t in the y x 2 direction. How

much is 2 t? T comes out t star comes out to be 1 by 4. So, that is essentially exactly

what happens right. So, t comes to be 1 by 4.
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So, we got current trial 0 0 and t star equal to 1 by 4. So, accordingly since x j equal to x

j star plus t into the you know the partial derivative at x equal to x dash, and we had 0

and 2. So, x 1 become 0 and x 2 becomes half right.

So, it is clear that you know one fourth is t and it has moved 2 t, that what we saw earlier.

So, new point has to be 0 and half right. So, that is our new trial solution 0 and half. So,

with that 0 and half we again iterate.
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So, new trial solution 0 and half so, again we find partial derivatives. So, we know those

partial derivative values. So, this time if I put x 1 equal to 0 and x 2 equal to half, then

the partial derivative with respect to x 1 is 1 and partial derivative with respect to the x 2

is 0. So, the new gradient will now become 1 0 that is at that point. So, this time we are

not moving towards x 2, we are now moving towards x 1 alright.
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So, now we have x 1 is 0 plus t star 1 t, and x 2 remains at half. So, what happens if you

recall? You know we started at origin, we have come to a point now we are going in this

direction  not earlier  we have come in this  direction  this  is  x 1 direction,  this  is  x 2

direction now we are moving in the x 2 direction because the although you know little bit

on x 2 also because x 2 is half right.

And not  dependent  on x 2 so,  it  will  move slightly this  direction,  not  this  direction

alright. So, if you substitute this expression, then the functional value becomes you know

after calculation t minus t square plus half. So, this is going to be our new functional

value.
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So, with this functional value, what we can do further; we find out the functional value

becomes maximize of this and if you if you differentiate again, then we find t star equal

to half.
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So, what is the significance of this t star equal to half? So, this is was our current trail x

dash now 0 and half t star is half. So, x j values will be these are our differentials. So, x 1

will be 0 plus half into 1 that is half, and x 2 will be half plus half into 0 equal to half

because at these point this is these are our the gradients right so; that means, we are not



moving in the x 2 direction, although we got you know value in that directions. So, since

the we are not moving. So, new point becomes half and half right. So, that is the new

point that will become half and half.

So, all of these are tabulated here in the next table.
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So, initially we started with 0 0 then we got 0 and half, then from 0 and half we moved to

half and half. So, if you continue in this fashion, we go to half 3 by 4, 3 by 4, 3 by 4, 3

by 4, 7 by 8 etcetera alright.
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So, we go to all this points and it looks like these. So, I was showing you from 0 0 to 0

and half to half and half to half and three fourth, 3 by 4th to 7 8, then like this we keep

moving and you know if you really look at the direction, we are actually moving to 1 1 it

is the optimal solution, verified by the fact that del f 1 by 1 is 0 0. Because if you move

any further then gradient will fall; that means, the curve will be like this right. So, that is

going to be the optimal point.

So, really we may not be able to get to the optimal point.
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So, the note should be the converging sequence of trial solutions never reached its limit,

the process actually stops somewhere slightly below 1, 1. So, if the objective function

were minimize fx, the move should be in the opposite direction of the gradient at each

iteration. So, instead of plus it should be minus and instead of maximizing it should be

minimizing right.

So, this is how without really computing the Hessian matrix and eigen values, if  we

cannot do that then from a gradient value itself we can do a gradient search right. So, in

our next lecture we shall see some more numerical methods for such kind of problems

right so.

Thank you very much.


