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So, in our course Selected Topics in Decision Modeling we are in our 23rd lecture. And

this will be on Multi-variable Unconstrained Non Linear Programming. 
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Now, last  lecture if  you recall  we had studied the single variable unconstrained non-

linear programming. But you know they are most of the situations they are not going to

be single variable, there could be multiple number of variables that it may not be a single

variable that could be number of variables that may be present.

And you know they could be interacting and that can be represented in the objective

function  and the  constraints  would also  be  similar  for  multiple  resources.  There  are

different  numerical  methods  that  exist  for  solving  multivariable  non-linear  objective

functions or constraints. So, let us see what are they.
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Now, although conceptually they are similar, but you know there are multiple variables,

they are present.

So, earlier if you recall we had taken the first order derivative and equated it to 0 to

really indicator slope change and therefore, the position of an extreme up. And thereafter

taken the second derivative as a sufficient condition to find out whether it is a maxima or

minima.  But  when  you  have  multiple  variables  instead  of  first  and  second  order

derivative, we really have to take the gradient that is the del operato and the Hessian

matrix, which will be an equivalent of the second order derivative.

So, essentially we need the two things the first of all the gradient and second of all the

Hessian matrix.  And again the equivalent  of putting  the gradient  equal  to 0 and the

Hessian matrix whether it is negative or positive should be established also. So, those are

the challenges that will be there for the multivariable unconstrained problems.
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Now, let us see how exactly they are; so, here is some here are some examples that is a

single variable problem f x equal to 12 x minus 3 x to the power 4 minus 2 x to the

power 6. And the other one, if you can see that x 1 square plus x 1 into 1 minus x 2 plus

x 2 square minus x 2 x 3 plus x 3 square plus x 3 you know that is a multivariable

problem.

So,  as  they  are  all  unconstrained  problem  we  have  not  taken  any  constraints.  So,

basically what we need to find out; the maxima for these two problems that example you

can see and in other situations you can have minima as well right.
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So, if there are the multi variable unconstraint problem; now we have come to the next

stage that is how do we solve this multivariate unconstrained problem. So, essentially the

problem is that we have to minimize or maximize f X, where x varies from x 1, x 2, x 3

to x n. And the problem is to be solved for each X values that satisfies the constraints and

we have to have the minimize the function.
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So, there are two conditions; one is called the necessary condition in terms of the first

order derivatives,  but in this case partial  derivatives;  is it  alright?  So, that is our del



operator, if f X reaches the extreme point whether maxima or minima at X equal to X

star, then the first order partial derivative of f X is also found at X star; that means, we

must be able to have the first order partial derivative defined at that point; is it alright.

So, it should not be that the function is not continuous and therefore, we do not have the

partial  derivative  existing  at  that  point.  So,  that  is  a  first  condition  that  the  partial

derivative should actually exist. After that once we know that yes said that particular

point we have the partial derivative existing, then we put individual partial derivatives

equal to 0 right. 

So, the solution of these you know the individual equations that you shall find by putting

the partial derivatives equal to 0, will be our you know the value of the extrema.
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But  we  have  to  also  have  what  is  known as  the  sufficient  condition;  the  sufficient

condition  that  should  be  in  terms  of  the  second order  partial  derivatives.  And  these

matrix that the second order partial derivatives will form is called a Hessian matrix right.

The Hessian matrix has to be either positive definite or negative definite or there could

be situations where they are neither positive definite nor negative definite. 

Now, how to know whether the Hessian matrix is positive definite or negative definite?

We shall see in due course of time, but just know this that if you know that the Hessian



matrix is a minimum then you know sorry positive definite, then we are going to have a

minimum.

But is it a global minima or a local minima that is also to be ascertained; now exactly

what are we saying here is that when it comes to the global minima the global minima

has to be you know the; suppose there is a card which is actually you know having

multiple peaks. For multiple peaks we shall have what is known as a; you know and if

you reach a particular one that could be called as a local minima or maxima. So, Hessian

matrix you know can indicate yes it is a minima or maxima.

But you know it does not really tell that whether it is an global one right. So, that require

further  knowledge  about  the  concavity  or  convexity  of  the  graph  which  has  to  be

established separately right.
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So, let us look at the gradient; now the gradient at a specific point X equal to X star is

nothing, but a vector whose elements are the respective partial derivatives found at X

equal to X star right. So, that we call it let us say the del operate del f X star equal to del f

del x 1, del f del x 2, del f del x 3 and up to del f del x n at X equal to X star; is it alright,

so that is our the concept of gradient.

So, it is all the partial derivative with respect to all the variables that we have at a given

us a point.
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So,  that  is  the  definition  of  gradient.  So,  here  is  an  example  supposing  we  have  a

function f X equal to 15 x 1 plus 4 x 2 cube minus 3 x 1 and x 3 to the power whole

square. So, what should be the value of the gradient? Now we need to find out the first

order partial derivative with respect to x 1, x 2 and x 3.

So, when we take the first order you know the partial derivative of the function with

respect to x 1; tell me which are the terms which will be useful for us right? So, as you

know in case of partial derivative, the first term which is 15 x 1 you know these term is

going to be used, the second term that is 4 x 2 to the power 3; I know this will not be

taken simply because there is no x 1 term in that, the third one that is 3 x 1 x 3 whole

square the reason x 1 term.

So, when you differentiate the first 15 x 1 will give 15, second term will return 0 and the

third term will return 3 x 3 square right; so, that will be our del f del x 1. So, similarly del

f del x 2 will be only the second term is having x 2. So, 12 x 2 whole square and third

term will be obtained from the third term again because first 2 terms do not have x 3 and

that would be minus 6 x 1 x 3.
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So, now what do we do? We combine them in the form of a matrix that you know you

can see that matrix here.

So, this is our matrix. So, you know this is 15 minus 3 x 3; 12 x 2 whole square minus 6

x 1 x 3. So, these entire thing will be our del f X that is the gradient; is it alright. So, we

have the gradient and for this particular function that is obtained.
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So, another example this example is slightly little more complex because we have an e

term that is you know f X is e to the power x 1 and within bracket ah; 4 x 1 whole square

plus 2 x 2 whole square plus 4; x 1, x 2 plus 2 x 2 plus 1.

Now, this has to be; if you if you differentiate it with respect to you know the x 1, then

you know these differentiation has to be done in parts right. The in the in the first one we

differentiate e to the power x 1 and e to the power x 1 differentiation is e to the power x 1

itself. So, you can see these term that is you know e to the power x 1 and the whole of

the second term will come and in the next stage we keep e to the power x 1 as it is and

we differentiate the term.

So, we take the x 1 things; so, we have 8 x 1 and there is one more that is here; so we get

4 x 2 right. So, it will be e to the power x 1 8 x 1 plus 4 x 2, but with respect to x 2 it will

be easier because e to the power x 1 will be you know not coming into the picture here,

there is no need to do that differentiation. So, if you simply multiply them; then actually

we have the first term is not a function of x 1, second term is a function; so, it come to 4

x 2.

Then third term gives 4 x 1 next term gives 2; so, e to the power x 1; 4 x 2 plus 4 x 1 plus

2. So, that will be our del f del x 2 and when you combine them all you know all these

terms. So, this is this one is the first term that is you know this entire term is here and

this is the second term that is here when you put them together that will be our gradient;

is it alright.

So, this is how we actually calculate what is known as the gradient. So, first of all we

have calculated for 2 examples; in the first example we had 3 variables. So, we took the

partial derivative with respect to each of the 3 variables and when you put them in the

form of a matrix that will be our gradient. And in the second example is a 2 variable

problem, we separately again found partial derivative with respect to x 1 and x 2 and

when you combine them that time we got the gradient.

So, you know how to really find out the gradient, we have to put gradient equal to 0 to

find out our extreme point. 
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Now, the significance  is  this  the change in  X that  maximizes  the rate  at  which f  X

changes is proportional to the gradient. The rate at which f X increases is maximized; if

changes in X are in the same direction with the gradient right; so, as long as the direction

is same then you keep going, but you know at a point when the slope changes.

So, gradient really represents the slope; so at some point the slope really changes and

when the slope changes then the directions will be different also. So, accordingly the

problem  should  attempt  to  move  in  the  same  direction  of  the  gradient  as  much  as

possible; until it reaches at optimal point. Because what happens at optimal point? The

optimal point the slope changes right, we have seen in those convex or concave you

know functions that the slope keep increasing in one case and then it decreases.

And in the another case the slope decreases in case of minima and then it increases after

the extreme point right.
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So, the objective of an unconstrained multivariable problem that is maximizing is to find

the feasible solution X star, while maximizing f X. And the problem should attempt to

move in  the  same direction  of  the  gradient  as  much  as  possible  until  it  reaches  the

optimal solution; so that is how we make use of gradient to solve problems. Now, having

seen the gradient part; let us see the other one that is the second order partial derivative

matrix or the Hessian matrix.
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The Hessian matrix is a square matrix of second order partial derivatives of scalar valued

functions and developed by German mathematician Ludwig Otto Hessy right and he is

again used to know the direction at any point of the curve for which we need maxima or

minima.
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So, what is Hessian matrix? So, you look on this side of the screen we have a Hessian

matrix format. So, supposing a function f which is really having you know a number of

variables let us say x 1, x 2, x 3, x 4, x 5, x 6 and all the way up to x n, then Hessian

matrix will be del square f, del x 1 square. Then del square f, del x 1, del x 2 basically it

is nothing, but del del x of you know the del f, del x 2 right.

So, del del x 1; so all of these terms are basically taking del del x 1 of del f del x 1; del f

del x 2, del f del x 3 and up to del f del x n. And then the second term is with regard to

del del x 2 and; obviously, the second term there will be then del square f del x del x 2

square. 

And finally, at the end del square f, del x n, del x 1; del square f, del x n, del x 2; del

square f, del x n, del x 3 and finally, del square f del x n whole square; so, these entire

matrix it can be called as the Hessian matrix.
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Now, look how to  really  find  out  Hessian  matrix.  So,  you know the  let  us  take  an

example that is f X equal to x 1 square plus x 2 square. So, first we need to find out the

gradient the what will be the gradient? What is the partial derivative of this function with

regard to x 1; del del x 1 of the function only for first term; is it not. So, we take the first

term and we find the derivative and we get what is known as 2 x 1 and if we do it with

respect to x 2; that is del f del x 2, then we get 2 x 2 because only the second term will

come.

So, the gradient will be the del f del x 1; del f del x 2 that is 2 x 1 and 2 x 2 right. So,

now how what will be your Hessian matrix? The Hessian matrix we have to find out first

of all del square f, del x 1 square tell me what it is? If you take del del x 1 of del f del x

1; now the del f del x 1 is 2 x 1, if you take it again del del x del del x 1 what will be the

value? You have guessed it correctly; it will be 2 right.

And what will be del del x 2 of del f del x 2? Because again the value is 2 x 2; so, it will

be 2 again. So, those two terms we know now we need to find out what is del del x 1 of

del f del x 2 and what is del del x 2 of del f del x 1. Look here del f del x 1 is a function

of x 1 because it is 2 x 1. So, if you take del del x 2; it will be 0 similarly del f del x 2

comes out to be a function of x 2 only that is 2 x 2.



So, if you take again the partial derivative with respect to x 1 that is del del x 1 that will

be 0 again. So, what will be the Hessian matrix? You know I hope you have understood

now what will be the Hessian matrix.
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So, let us see what it is. So, you know we have the function x 1 square plus x 2 square

and we have taken the gradient and the gradient has come out to be 2 x 1 and 2 x 2. Now,

we compute all these 4 terms; the first term as you have seen that del square f del x 1

square is 2 because this value is 2 x 1.

So, it becomes 2 the last term del square f del x 2 whole square is the del del x 2 of these.

So, it will be 2, but the other terms as 0 as you have seen just now. So, if you if you put

them all in the form of a matrix that sees that is our Hessian matrix and that Hessian

matrix will be 2 0 and 0 2 right. So, I hope you understood how to really obtain the

Hessian matrix, I know that is the first part of the thing.
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So, let us take one more example. So, you know these example we have also seen earlier

that is the other example that where f X is 15 x 1 plus 4 x 2 cube minus 3 x 1; x 3 whole

square. So, when you have taken del f del x 1 del f del x 2 and del f del x 3 you know we

really got the gradient. Now, what will be our Hessian matrix? So, when you take the

Hessian matrix the first term is a differentiation of these with respect to x 1.

So, what will be that first term? It will be definitely 0 what will be the second term? The

second term will be you know, second term is a required del f del x 2. So, del f del x 2 is

12 x 2 whole square; so if you if you differentiate is by del del x 1; what will you get? 0

again and what will be the third term? This is your del f del x 3. So, so if you if you

differentiate it with respect to del del x 1 what will you get? You will get you know

minus 6 x 3 is it not.

So,  like  that  you can  get  the  Hessian  matrix.  So,  this  is  how the  Hessian  matrix  is

obtained let us see each term; supposing this term just now I said that del f del x 3 is

minus 6 x 1, x 3. So, if you differentiate with regard to del del x 1 you get minus 6 x 3.

So, again let us see how this 24 x 2 is coming. So, this is our you know this is our term

that is del f del x 2; again if you differentiate that is del del x 2 of the term then we will

get 24 x 2.

Similarly, third term minus 6 x 1 x 3 is del f del x 3, again you differentiate it with

respect to that is del del x 3 it will get minus 6 x 1 right. So, rest of the terms are 0; let us



see only this term. So, this term is del del x 3 of del f del x 1; del f del x 1 is this. So, if

you take del del x 3 the first term we will get nothing, the second term we will get minus

6 x 3 right. So, I hope you have now understood how to obtain the Hessian matrix.

The Hessian matrix is a matrix of second order partial derivative in a particular form and

the Hessian matrix has got a very important significance and what is that significance? In

terms of non-linear  programming problem right;  so,  we must understand that.  So,  in

order  to  understand  that  let  us  see  what  is  the  meaning  of  positive  and  negative

definiteness of a Hessian matrix right?

(Refer Slide Time: 24:18)

So, you know a matrix we can find out their eigen values right. So, you all have studied

the concept of eigen values, I will show you how to find eigen values very quickly this is

not very difficult rather easy.

So, once you find out the eigen values then you check that whether those eigen values

are positive or negative, but the question is see the eigen values should be all positive or

all negative or all greater than equal to 0 or all negative that is all less than equal to 0. So,

only these 4 cases are considered here ah; can there be some other cases as well? Is it a

complete set? Answer is no, it is not a complete set. Supposing we have 3 eigen values,

two could be positive, one can be negative right or one is positive rest two are negative.



So, if  we have combination  of the eigen values  both positive and negative;  then we

cannot really conclude whether the Hessian matrix is a either positive definite negative

definite or positive or negative semi definite right. So, only in these 4 cases are defined;

rest of the cases we are not going to take up in the sense that in that case it will be

difficult to conclude right. So, now, if the all the eigen values are positive then we call it

the Hessian matrix has positive definite.

If  all  the  eigen  values  are  negative  then  we call  all  the  Hessian  matrix  as  negative

definite and if all the eigen values are greater than equal to 0; that means, positive, but

greater than equal to 0; then we call the Hessian matrix as positive semi definite and

finally, if all are less than equal to 0 then we call the Hessian matrix as negative semi

definite.
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Now, let us see how to find out the eigen values? Now you see, we got in our example

one of the situations where Hessian matrix is a 2 0; 0 2 that was our Hessian matrix.

So, we know that we have to have a characteristic equation; the characteristic equation

for obtaining eigen value is given by the absolute value of H minus lambda I equal to 0,

where H is the Hessian matrix and I is the identity matrix. So, what we do? 2 0 0 2 minus

lambda 0 0 lambda you know that is what you get by multiplying and unity matrix 1 0 0

1 with lambda matrix right; so, that is lambda 0 0 lambda.



So, we put that equal to 0. So, if you put that equal to 0 then what are we going to get?

See we get a matrix 2 minus lambda 0 0 and 2 minus lambda is it not that is the matrix

that is now put equal to 0.
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So, that is exactly what is written here that this will become 2 minus lambda 0 0 2 minus

lambda equal to 0.

So, when you try to solve them then you multiply 2 minus lambda into 2 minus lambda

minus 0 in to 0. So, that is exactly what is written here and that gives us 2 minus lambda

into 2 minus lambda equal to 0. So, it is factorized already; so we do not have to do

anything therefore, we find lambda 1 equal to 2 and lambda 2 equal to 2 also. So, all the

eigen values are found to be greater than equal to 0 that is positive. So, we then say the

Hessian matrix is then positive definite.

So, what does it mean? It really means that since the Hessian matrix is positive definite

that function, if you put equal to 0 that is the gradient of the corresponding matrix you

know we then get the minima because we have a positive definite Hessian matrix right

that is the significance.
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Let us take another example; suppose the Hessian matrix is 0 1 and minus 2 and minus

three. So, follow the same procedure H minus lambda I absolute equal to 0.
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Then we get 0 minus lambda 1 minus 2 minus 3 minus lambda. So, you get this kind of

format and when you put them into an equation we get lambda square plus 3 lambda plus

2 equal to 0 by simple factorization we see lambda plus 2 lambda plus 1 equal to 0 or

lambda 1 equal to minus 2 and lambda 2 equal to minus 1. So, all the eigen values are



found to be negative and therefore,  the Hessian matrix is negative definite this  is all

right.

So, this is how you know we find the gradient, we find the Hessian matrix and we find

the  Eigen  values  of  the  Hessian  matrix  and from there  try  to  conclude  whether  the

Hessian  matrix  is  positive  definite  or  negative  definite  right.  The  positive  definite

Hessian matrix is connected to a minima when you put the gradient equal to 0. And

negative definite Hessian matrix is connected to maxima, if you put the gradient equal to

0. So, in our next lecture we shall see some problems related to this, right.

Thank you very much.


