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Single-Variable Unconstrained Optimization

So, in over course Selected Topics in Decision Modeling, now we are into our 22 lecture,

that is Single-Variable Unconstrained Optimization problems these essentially the non-

linear programming problems we are discussing. So, within that we are now discussing

the single variable unconstrained optimization problems.
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Now, a unconstrained optimization problem in the context of non-linear programming

we  might  have  the  objective  functions  is  non-linear  and  there  are  no  functional

constraints. So, that is the essential definition of unconstrained optimization that there is

you know non-linear objective function, but there is no functional constraint.

So, it could be single variable or it could be multiple variable so, you can see in the first

case we have a case where we have maximize f x equal to 12 x minus 3 x to the power 4

minus 2 x to the power 6. So, we have only one variable so, since there is only one

variable we call it the single variable problem. On the other hand the second example

you can see the objective function is x 1 square plus x 1 into 1 minus x 2 plus x 2 square

minus x 2 x 3 plus x 3 square plus x 3.



So, you can easily see that there are multiple variables. Now, multiple variables problems

are a little a more complex then the single variable problems. In this particular lecture we

are mainly discussing the single variable problems only right.
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So, in the single variable problems for a given single variable differentiable functions f x

x equal to x star will be an optimal solution if necessary and sufficient conditions are met

right.

So, that is what we are discussing here that is, we have let us see a function maximize z

equal to f x all right. So, what is the necessary condition necessary condition will be df

dx equal to 0 at x equal to x star, but we cannot call x star as optimal until and unless it

also satisfies the sufficient condition; that means, the condition of sufficiency that the

second derivative should be negative right the second derivative should be negative. So,

this is what happens in case of maximization problem.

What will be there for the minimization problem, the minimization problem everything

else is similar the necessary conditions is again the first derivative should be 0 at the

point  of  optimality, but  additionally  there  should be the second derivative  should be

greater  than equal  to  0.  So,  second derivative  less than equal  to  0 for  maximization

second derivative greater than equal to 0 for minimization right so, this is was we have to

do right, we have to find out.



The problem really comes when we might be able to find out the derivative values, but

from the derivative values which may not be possible to find the value of the variable

decision variable very easily, because higher order equations are really involved so, that

is where the problem comes.
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So, simple problems are easy, but difficult problems let us look at some of these things

before we solve these problem. Let us take a very simple problem suppose I have only

these problems to solve that is let us say maximize supposing I have this problem to

solve that is maximize f x equal to 12 minus 2 x square right. So, only this problem to

solve now we find what is it is say 12 x.

So, maximize f x equal to 12 x minus 2 x square only this much nothing else. So, if I am

solving only this much and not the problem that is given here then if I find the first

derivative df x dx then we find is equal to 12 minus 4 x. So, when I put equal to 0 I can

easily find x equal to 3, what is the second derivative second derivative d square f x by

dx square equal to minus 4 we can see that this is negative.

So, since it is negative so; that means, the original function is concave objective function

was concave and therefore, the x equal to 3 is our optimal solution alright. So, once again

look what we have done we have a problem maximize f x equal to 12 x minus 2 x square

we took the first derivative and we got 12 minus 4 x we put the equal to 0 and we got the

x star equal to 3.



So, when we got x star equal to 3 that is over optimal solution for maximization because

the second derivative is equal to minus 4 which is negative there is no difficulty here

alright.  So,  this  simple  example  is  very  easy  which  are  solve  and  there  is  no  con

confusion what is waiver, but what happens in this problem, let us see now see maximize

f x equals to 12 x minus 3 x to the power 4 minus 2 x to the power 6.

So, if we take first derivative we see the first derivative is 12 minus 36 x cube minus 24

you know x 5 right. So, we see sorry 12 into yeah. So, minus 2 x 6 so, minus 12 x 5 so,

this can we shown as df dx equal to the first derivative 12 into 1 minus x cube minus x 5.
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So, this is very easy to verify that that is our first derivative,  if you take the second

derivative that we minus 36 x square minus 60 x to the power 4 alright. Now, second

derivative is less than equal to 0 y because put any value of x, so, x square will  be

positive term and x to the power 4 will be also a positive term. So, this is multiplied by a

negative number and here also multiplied by a negative number. So, whole total must be

negative so; that means, the second derivative is negative.

So, it is conclusively seen that the second derivative is negative. So, we have no problem

here the second derivative is negative, but what about the first derivative we have to put

the first derivative equal to 0 that is our necessary conditions. So, to satisfy the necessary

condition we should have the first derivative equal to 0.



So, if you put that first derivative equal to 0 which essentially means that 1 minus x cube

minus x 5 equal to 0, now this is not going to be easy to solve this because you would not

be able to factorize it. So, easily this particular problem may not be so difficult because

you know equal to 1 equal to x cube plus x 5. So, you can take x cube common and all

those  things  you can try, but  then  let  us  not  the usual  thing because  you may have

different  co-efficients  for another  problem we should really  find method where such

problems can be solved all the time not for a given problem.

So, one can see that finding value of x is very difficulty here in an analytical manner. So,

therefore, there are such an procedure which can be called as one dimensional search

procedure several methods are there we discuss one method that is bi section method. So,

how do we find out the solution for such problems in it is simple manner by an iterative

procedure.
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So, what we can do you see this is how we gain, supposing a x star is optimum solution

and we are really solving a maximization problem, for minimization problem it will be

slightly different, for a maximization problem you can see the function is concave. So, if

the function is concave you can see that this is where the, you know is our optimal point.

So, this is the optimal point so, the before the optimal point so, this side is x is less than x

star and this side is x is greater than x star is it know. So, what is your basic concept

about suppose I make a small chart x less than x star x equal to x star and x greater than x



star. So, these are the 3 regions and now what is your comment on the slope so, this side

it is increasing slope.

So, we can we say that is slope is positive this is the point which is the settled point at the

between point so, slope is 0 and here it is falling. So, slope is negative now we know that

df by dx is nothing, but slope alright. So, same thing is noted here you know this if x is

less than equal to x star then the slope is positive, if x is equal to x star slope is 0 if x is

greater than x star slope is less than equal to 0. So, this is very easy to understand that

essentially that is what we have written here right.

So, what we do is  basically, suppose we do not  know the function,  but we take 2.0

suppose we take 1.0 here and 1.0 here is alright and then you know this where from we

get these 2.0 it is not that these 2 points has to be exactly on the both sides, but we

should be able to find 2 points which we know very very much with certainty that one is

on this side, other on the other side that we should know, if we know then what we do we

take the average supposing the average is here right.

Now, for that average we find out this slope or the gradient, then we imply checked that

is this slope negative or if the slope positive supposing we know the slope is negative

suppose this is our original point a and this is the original point b, then if is see the slope

is still positive then we discard this a and called this as a is alright then again we take

average and supposing we get another point suppose here.

So, then that we called b and we discard this original b so, like this you know what us

happened, again we take average in by is by section method we are essentially nearing

the point when we are coming to very close to this optimal point we may say yes optimal

point is reached right. So, this is how the one dimensional search problem actually shall

proceed.
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So, let us see that how it happens. So, initialization select a epsilon find an initial x bar

and you know x underline and x bar and then the trail solution is x underline plus x bar

divided by 2. So, this x underline is on one side and x bar are on the other side. So,

supposing we have a function, this is our function so, this is our function this is suppose

to be optimal.

So, this is your x bar then the other side is your x underline and x bar, now the question

is evaluate df dx; that means, the gradient at the point supposing this is our point so, this

is our x dash. Now look here supposing the x dash is on the upward slope if it is see this

is the upward slope; that means, greater than equal to 0.

So, if it is in the upward slope then these points so, should really come here right. So,

this point goes here; that means, x dash now will come x underline right. So, if df dx is

greater than equal to 0 reset x bar with x dash which is the trail solution which is the

average solution. So, basically this is how we proceed and similarly now same thing we

might do with the next case.
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Then if the slope is on the other side then take x bar equal to x dash right. So, how it is

done once again so, this is our plot, this is our curve. So, this is our let say x underline

and this is another point which is x bar. So, this is our x dash so, if x dash has come in

such a way the slope is actually negative which is falling under that. So, these x dash

now should be taken as our nu x bar right. So, that should be reset.

So, that is how you do and then select a new x dash and again follow an if the difference

between the x bar and x underline you know the difference between them if they are

within 2 epsilon then we should stop; that means, x dash is within epsilon because x dash

is in the middle. 

So, if the gap this is the gap this is the gap so, if the gap x is somewhere in the middle.

So, if the gap is less than the 2 epsilon we may say that x x bar is within epsilon of x. So,

we can stop otherwise continued so, that is how the method is so, very simple method let

see how it is operated.
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Let us took take the example once again. So, the example was maximize f x equal to 12 x

minus 3 x to the power 4 minus 2 x to the power 6. So, we took the 2 derivative df dx

once again it should be 12 minus 12 x 3 minus 12 x 5. So, 12 is common 1 minus x 3

minus x 5 and the second derivative is minus 36 x square minus 60 x 4 which is less than

0.
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So, that is the first take then after that this is the plot you know 12 minus 3 x to the

power 4 minus 2 x to the power of 6, that is our objective function to really show that the



objective function is concave right. So, these shows the objective function is concave and

we have also shown the objective function is concave by taking the second derivative

and we saw that the second derivative is negative.

So, since it is a concave objective function the maximization of the function is possible

right maximization of the function is possible because if you would have had a concave

objective function non I mean convex objective function then there was no you know

global maxima that was not possible to find. So, that is very important consideration that

has to be seem first right, now what we do that 2 inspection it can be seen.
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So, how, we see that inspection.
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So, you can see that these functions is going through you know certain points; obviously,

it goes to 0 and this side is another point let us a 2. So, defiantly you know it this has to

be between 0 and 2. So, 0 is the supposing where is the objective function. So, supposing

this  is  our  maxima so,  maxima will  be somewhere  here now it  is  known that  these

maxima is definitely form a 0, 0 this is 0 and somewhere here that is 0.2 right 0 will be

one side, 2 on the other side.

So, if you carefully see the graph at least one can work out that there should be 0 or 2

right. So, which should be within 0 and 2 so, these 2 limits are required. So, we must

have those 2 limits first. So, when we have ascertained that those are our limits then form

those limits you know we can begin.

So; that means, we can say that first of all things you have to seen that f x is concave f x

is negative if x is less than 0 or x is greater than 2 alright. So, therefore, we can make use

of one dimensional search procedure that we can make with the following initial values

that is x underline equal to 0 and x bar equal to 2 and let us take a epsilon equals to 0.01

so, with this values we begin.
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So, now we can first take x dash equal to the average of the 2 so, 0 plus 2 by 2 equal to 1

right. So, 1 will be our new value, now we check what happens at 0.1 you recall that, that

was our first derivative df dx is 12 into 1 minus x cube minus x 5. So, when you put that

value 1 we find 12 into 1 minus 1 minus 1 equal to minus 12. So, we get a negative since

we get negative; that means, which side it will fall we call this is our card. So, this is

negative so, this point must have fall in this side so, this side means. So, this is 0 side and

this side is 2 side right.

So, 0 was x underline 2 was x bar; that means, this is new point should be replaced by x

bar x bar. So, new value for x bar should be therefore, x dash equal to 1. So, that should

be our new x bar right so, that is the first iteration, in the first iteration therefore, we find

the new value of x bar.
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So, once we find the new value of x bar, now what happens again we find that what was

the value please now remember once again x underline was 0 x bar has become 1 right.

So, those are the values so, using those values we can now find next trial solution that is

x dash and then that you find 0 plus 1 by 2 equal to 0. 5. So, this is going to be over new

trail solution so, once again derivative 12 into 1 minus x cube minus x to the power 5.

So, at x is equal to x dash these values comes out to be 10.125 right. So, what is the

10.125, this is a positive value. So, since it is a positive value now it will fall on the other

side that is 0 side. So, these values somewhere here right. So, since it is that side now x

bar should be reset so, what should be the new value of x bar, it should be reset to x dash

that is 0.5 right.

So, if  you continue our iterations  so, with that again we can have you know further

iterations  and  when you stop  when we see  the  difference  between  the  x  bar  and  x

underline is within 2 epsilon right; that means, x dash will be within epsilon of x star that

is a optimal right. So, let us how we continue the process so, all of these can be shown

nicely in the form of a table so, that table let us look at the table.
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So, this is how the computation goes on that at the first iteration between 0 and 2 we find

1 look how the f x dash is increasing. So, then after that the new value of x dash becomes

0.5, then again at the next 0.5 to 1 it becomes 0.75, then 0.75 to 1 the value; see now

slowly the value is increasing and then between point say 0.5 to 0.875, then 0.8125 like

that, it goes and finally, you know at the 7-th iteration we find that these values become

0.828125 and 0.84375 and the gap is within the 2 epsilon right.

So, we have this kind of value that is 7.8839 right so, then we stop.
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So, after 7-th iteration we have the gap has fall in within 2 epsilon. So, that is how we

can actually continue. So, this x bar minus x underline is within 2 epsilon the gap is less

than 0.02 we stop our iteration and final solution they are becomes 0. 8359375.

So, all these 2 x dash and x x underline we take again average and we get the x dash is 0.

833 and the function value become 7.8839. So, this is how we can through an iterative

procedure obtain the optimal solution right. So, let us take one more, quick example.
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So, that we understand our process very easily so, maximize f x is equal to 8 x minus 3 x

square plus x cube minus 2 x to the power 4 minus x to the power 6. So, we take the first

derivative that is 8 minus 6 x plus 3 x square minus 8 x cube minus 6 x 5 and second

derivative minus 6 plus 6 x minus 24 x square minus 30 x 4 right. So, those are the first

and the second derivative now this is the function.
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The function you can see it is between 0 and 1.2 there on the 2 directions. So, through

inspection it can be seen that f x is a concave function, it is a concave function that is the

function a nature is like this and the second derivative is also for certain values we have

to see explore if further and f x is negative.
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If x is between x is less than 0 or x is greater than 1.2 so; that means, x underline you can

take as 0 and x bar 1.2 let us take epsilon is 0.01.
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So, at the first detraction x dash comes to 0.6 and if we evaluate df dx you know at x

dash it comes to 3.2854 that is greater than 0; that means, this is an upward slope; that

means, we reset lower values the lower value we then become 0.6 right. So, again we

take average and we take get 0.9.
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And again if we take the gradient we find this time the gradient is negative; that means, it

is on the other side; that means, reset the x bar now that is on the upper limit to x dash

equal to 0.9 like this we continued. So, here is the computation table.
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Like  this  we continue  and as  we continue  we finally, after  the 7-th iteration  we get

reasonably good value.
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So, we have the x bar minus x underline equal to we stop and the gap is less than this and

these are our final solution right. So, this is how we can solve the single variable NLP

problems by first derivative and the second derivative right. So, these are on the easier

side, next class we shall see how multiple variables are to be considered, right.

Thank you very much.


