
Selected Topics in Decision Modeling
Prof. Biswajit Mahanty

Department of Industrial and Systems Engineering
Indian Institute of Technology, Kharagpur

Lecture - 16
Exhaustive Enumeration and Branch and Bound Techniques

So,  in  our  course Selected  Topics  in  Decision Modeling,  today we shall  discuss  the

Exhaustive Enumeration and Branch and Bound Techniques as applied to integer linear

programming problems, is it alright. So, what we do here in the exhaustive enumeration

and  branch  and  bound  techniques,  they  are  two  different  techniques;  and  both  the

techniques are essentially can be called as Enumeration Techniques right.

(Refer Slide Time: 00:43)

So,  both  are  enumeration  techniques.  And what  happens  in  enumeration  techniques?

Systematically  we generate  and evaluate  all  possible  solutions  and choose that  those

feasible  solutions and you know with the optimal  value.  So,  obviously, out of many

feasible solutions one that will give us the best solution will be our optimal solution, so

that is how we do exhaustive enumeration. So, we look at all possible solutions.

Whereas, in branch and bound we divide the large problems into smaller sub-problems

you know the sub-problems should be divided in  a  particular  way. So, that  they are

mutually exclusive and collectively exhaustive I will explain that. And then there should

be two mechanisms; one mechanism to branch out those sub systems that means break



them into smaller subsystems, and a mechanism to generate a bound. The bound means

this  possible  value  at  you know that  sub-problem level  and then  the  examining  the

bounds you know we try to  find  out  the  optimal  solution.  So,  it  is  very  interesting

method the branch and bound. So, we will explain that also. But before that let us look at

in detail what is this exhaustive enumeration method right.

(Refer Slide Time: 02:09)

So,  let  us  take  a  simple  problem  systematically  how  do  we  generate  a  linear

programming problem? What is that problem? Maximize Z equal to 3 x 1 plus 2 x 2

subject to x 1 plus x 3 less than equal to 3, and x 1 plus x 2 greater than equal to 0, and x

1 and x 2 are binary, is it alright. So, how do we solve this particular problem? What are

the all possible solutions? Can you think and tell, very simple problem, x 1 and x 2 are

binary. 

So, what are all possible solutions? I just think over that since you know it is all binary,

so x 1 could be 0 or 1, x 2 also could be 0 or 1 right. So, that means, you know x 1 equal

to 0 and x 2 equal to 0, x 1 equal to 0 and x 2 equal to 1, x 1 equal to 1 and x 2 equal to

0, x 1 equal to 1 and x 2 equal to 1. They could be our all possible solutions, so very easy

really, so because it is a very simple problem. 



(Refer Slide Time: 03:38)

So, that is what we put it in this manner. So, you see at P 0 level x 1 is that is the initial

level, we put x 1 equal to 0 or 1, x 2 equal to 0 or 1. Then we branch you know x 1 could

be 0 and x 1 could be 1 that will give us a problem which is may be called as P 1. At

these x 1 equal to 1, and x 2 is 0 or 1, here x 1 equal to 0 and x 2 could be 0 or 1. Then P

1 is again divided x 2 equal to 0 and x 2 equal to 1 then we get P 3 and P 4 P 5 and P 6. 

So, what is P 0? P 0 is the original problem you know very clear. What is P 1? P 1 is a

problem which is you know these with x 1 equal to 1. P 3 is a problem which is x 1 equal

to 1 and x 2 equal to 1. Similarly, P 4, P 5, P 6. Now, look here the original problem P 0,

we would like to solve by enumeration we found that basically the solution of P 0 is the

base possible solution of P 3, P 4, P 5, P 6.

So, where we had only one problem, we now have 4 different problems with 4 different

solutions, the best ones among them going to be our optimal solution right. So, this is

what exactly we do in exhaustive enumeration. We have enumerated all possible n nodes

are  found;  every  n  node  is  a  problem right  that  is  the  original  problem with  some

additional conditions right. But collectively all of these small problems you know not

really small conditional problems, they are collectively define the total problem that is

what is exhaustive enumeration does right.



(Refer Slide Time: 05:56)

So, if that is so then you know we can now find out the solutions for these four problems

there is easy if x 1 equal to 1 and x 2 equal to 1, z star will be 5. If this is 1 and 0, it will

3; 0 and 1, it will be 2; 0 and 0, it will be 0. So, this is the objective function values

written. As I said what is the objective function value for P 0? It is the best possible value

out of these four because these 4 problems collectively define all the possible cases of P

0.

Actually we are trying to solve P 0, not P 3, P 4, P 5, P 6. The best solution for P 3 is 5, P

4 is 3, P 5 is 2 and P 6 is 0 alright. Out of that 5 is the best. Since, 5 is the best, now it is

clear the best solution for P 0 is x 1 equal to 1, x 2 equal to 1 and z star equal to 5 say our

we are not interested in solving P 3, we are interested in solving P 0 right. P 0 is P 3 is 1

of the cases of all possible enumerations and the solution of P 3 comes out to be the best,

so that is the optimal solution for our original problem that is P 0. I hope you understood

that is how by exhausted enumeration we can solve such problems anyways it is fairly

easy its simple problem we took. So, there is nothing much to worry. 



(Refer Slide Time: 07:46)

Let  us  see  slightly  other  issues.  The  problem  is  that  if  we  are  really  doing  binary

bifurcation. So, if number of binary variables are 2, number of enumerations are 4. If we

had instead of 2 variables as 3 variables, number of enumerations would be 8. If we had

10 variables enumerations will be 1024. And when you go to 50, you know if we had 50

variables, then the binary enumerations would have been 1.126 into 10 to the power 15.

You can imagine it is a high number right.

So, if you do exhaustive enumeration, you know it might lead to very high computational

complexity, is it ok. You know you may have to really evaluate a very large number of

problems. You can say I have big computers what is the difficulty, but how big is the big

there could be problems in reality which may have 1000 binary variables. And then the

problems size would be so large that you may require years, 10 years, 20, 30 years to

solve a large problem. 

We do not have that much time. You need to solve a problem in a reasonable time. So,

exhaustive enumeration or a kind of brute search is a method, but not always applicable

because  it  makes  the  problem computationally  so  large  so  complex  that  we  simply

cannot  think  about  it.  We must  have  efficient  method  right.  And  one  such efficient

method is branch and bound. 



(Refer Slide Time: 09:45)

But before going to branch and bound let us see one more example. So, let us say 0-1

knapsack problem by exhaustive search. Let us say we have 4 items item 1, item 2, item

3 and item 4 with a weight and a value. And this weight and value you know we need to

maximize the value within a certain knapsack capacity. How do we go about, obviously

the formulation is maximize Z equal to the total value 16 x 1 22 x 2 12 x 3 and 8 x 4

subject to the weight restriction that is 5 x 1 7 x 2 4 x 3 plus 3 x 4 less than equal to 14. 

And additionally this is 0-1 knapsack; that means, each item can be either there or not

there as simple as that right. So, generate all possible subsets of n items that is how we

shall go about that all possible combinations right. And compute total weight of each

subset and see whether it is visible or not visible. Then find the subset of the largest

value 2 to the power n possible subsets that will be generated, so that is how we go head

with this 0-1 knapsack problems right.



 (Refer Slide Time: 11:08)

So,  let  us  see  what  are  some  possible  generations?  So,  look  here  these  are  the

generations, first of all you can have null set then you can take only 1; we can take 2; we

can take only 3 or 4. Then we can take combinations like, 1 and 2; 1 and 3; 1 and 4; 2

and 3; 2 and 4, and then 3 and 4 right, 6 combinations. And then also we can have 1, 2, 3;

1, 2, 4; 1, 3, 4, and 2, 3, 4. 

And finally, all 4 of them 1, 2, 3, 4 so that is 1, 2, 3, 4, 5 then 611; then 415, and 116 is it

not. So, that is what 2 to the power n that is 16 possible combinations that we could have

under the situation that is 2 to the power 4. So, 16 possible combinations are there. Now,

what we can do for each combination we can find out what is the weight, and what is the

value. And based on the weight whether it is becoming you know feasible or infeasible,

because if the weight is more than 14, then it will become infeasible fine.

(Refer Slide Time: 12:31)



So, then we see what where we reach. So, we will see that as we evaluate then we find

for null set both are 0 for 1, 2, 3, 4 it is only the weight and value as given. If we take 1

and 2, then will become 5 plus 7 12 and value is 38 like this for each of these we can

write down the weight and the value. We see that total weight crosses in some situations

for example, here and here the total weight is crossed. 

So,  this  since  they  are  crossed  they  are  all  infeasible  right,  these  solutions  are  not

practical. So, out of these remaining solutions which one shows the maximum possible

value, just look at carefully this 38 is good you know, but this 42 is the best. So, the best

solution comes in  the combination where we take the items 2,  3,  and 4 with a total

weight of 14 that is within the knapsack, and with the value of 42 is it alright. So, that is

our best possible solution.

So, by exhaustive search we can find out the problem of the knapsack problem, but for

only four items we had 2 to the power 4 different searches think of 10, then it will 2 to

the power 10 right, 20 items 2 to the power 20. So, there are lots and lots of such you

know combinations, which we have to search, and it could be complex very complex and

computationally challenging. So, may not be possible to solve right. So, let us see then

another  way  of  solving  these  problem  which  may  be  called  as  branch  and  bound

technique. 



(Refer Slide Time: 14:33)

So, how this branch and bound technique is and how we go about it. Again I repeat how

what is really a branch and bound method is that you know, specifically a divide and

conquer method, so we break a large problem into a smaller sub problems. And you need

as I said two mechanism a mechanism to generate branches; mechanism to generate a

bound. So, that many branches can be terminated. So, how do we go about it?

(Refer Slide Time: 15:10)

So, that is our branch and bound technique. So, as you see you know this look at these

example what we have done supposing this is our total problem the total problem is you



know this is our total problem. The total problem is divided into two sub-problems S S 1

and S S 2, and S S 1 and S S 2 must be mutually exclusive, but collectively exhaustive

right, mutually exclusive, but collectively exhaustive.

See it is not necessary that we have to divide into only. Let us take a simple situation,

supposing I have three people A B C and these three people are doing three jobs, J 1, J 2

and J 3. Now these are the times which are taken by A B C alright. So, who should do

which job? So, this is the time required to do job right. A does the job 1 in 10 minutes or

10 hours; B does in 9 hours; C does in 8 hours sorry. A does the job 1 in 10 hours; job 2

in 9 hours job 3 in 8 hours; B does in 9, 8, and 7; and C does in 12, 10, and 8 hours. Now

who should do which job, so that we can do all the three jobs in the minimum possible

time. 

So, first of all we have to do if we have to solve this problem, by branch and bound

technique. First of all we should be able to quickly find a bind a bound. How do I found

bound? So, this is a minimization problem, because we need to find out who should do

what minimum possible total time. This is what we want, who should do which job in

minimum possible total time. So, it is a minimization problem and we really find out

then the lower bounds LB, what is LB lower bounds.

So, how do I find out the lower bounds, so can you quickly find out a lower bound from

this matrix. Suppose if we find out row wise then 8 mean hours, that is lowest; 7 hour

that is lowest; and 8 hour that is lowest. So, 8, 7, 8, 23 hours is the lower bound you

know. So, you see if you know only each only job 3 would have been done by A and B

and C the job could have been done in 23 hours, but then we need to do all the jobs.

So, just doing J 3 is not enough. So, these 23 is a lower bound no problem at all, but

these 23 is infeasible right. So, we have found a lower bound 23 which is an infeasible

solution. Now, how do I make branches, so supposing we make three branches. What are

the branches, A dash J 1; A dash J 2; and A dash J 3. You see A has to do either J 1 or J 2

or J 3, there are three people three jobs. A has to do either one, supposing A dash J 1 then

this line is gone, that means, A has to do J 1. So, out of the remaining this is these matrix,

which is the lower bound again we have 7 and 8, so 15 and this 10, so 25. So, this 25 is

the lower bound again it is infeasible. Why, because B and C both are doing job 3, so, it

is an infeasible solution is it alright.



So,  you see  what  we have  done,  the  original  problem we have  branched  into  three

problems, and for each problem we are finding the bounds alright. If A does J 2, then you

know these two lines will be gone. So, let us write once again 10, 9, 8; 9 8, 7; 12 10 8.

So, J 1, J 2, J 3, A, B, C, so A does J 2, so this is gone, so A will be 9. Now, which is the

lowest again these are lowest, 7 and 8. So, what is the bound bound is 24 24, but it is

infeasible again. But if A does J 3, so again let us see 10, 9, 8; 9, 8, 7; 12, 10, 8, A does J

3.  So,  then you see them again the lowest is  18 here,  and this  8 here,  so this  is  26

infeasible. 

So, we are getting all infeasible solution, but then you see A 2, J 2 looks promising,

because this is 24 infeasible. Then you know if we go further then again now B has to do

either J 1 or J 2. So, look here then we find B to J 1 and B to J 2. So, we did it further

right. So, if now B does J 1 look, so this is also gone, so B does J 1. Then C has got only

one choice, C has to do J 3 only. So, you see that time is 26 infeasible feasible, it is a

feasible solution. Because A 2 you know this A to J 2, B to J 1, and C to J 3 is a feasible

solution. But then if B does J 3, then C has to do J 1 then that time is 27 again feasible.

So, you see now if we look here, something interesting has come up that you know, B to

J 1 26 feasible; B to J 2 27 feasible; A to J 3 26 infeasible; and A to J 1 25 infeasible

right. Now, which is the lowest, lowest is 25. So, we have to explore A to J 1 further.

Supposing arbitrarily I am saying now, if we explore this further, you know we might

find a value which is higher than 26. Supposing arbitrarily I am not doing it, supposing I

find 30 here, and 31 here suppose. Then you see out of 30, 31, 26, 27 and 26 infeasible.

This is the 26 feasible is the lowest also, and feasible also. That means, the solution

obtained in these branch is the lowest amongst all the different branch values, and at the

time feasible.

So, when that happens you know we find an optimal solution right. So, this is how it

goes that we divide the problem into different subsystems, and those subsystems should

be mutually exclusive and collectively exhaustive, is it alright. And in each we find a

bind we found a bound, it could be lower bound for minimization and upper bound for

maximization.  Once we found the bounds then you know keep on branching till  you

know you get to a point where a particular branch is fathomed, that means we cannot go

further into that branch anymore. So, when that happens; you know we have found the



best possible solution by observing all the N nodes, and finding the best possible bound

values. As we see more and more examples our concept will be clear. 

(Refer Slide Time: 25:04)

So, let us look at a little more theory and let us see some of the things. So, these are three

basic steps. So, first one branching, bounding, and fathoming right. So, what we did each

problem we branched and then we found bound for each branch. And accordingly each

branch we should know where to stop that is called fathoming. Branching choose one of

the variable whose value will be fixed to create n new sub-problems. So, you see the

problem that we took we fixed that A to J 1 or A to J 2 or A to J 3. So, when you fix then

you  created  certain  sub-problems  which  are  obviously,  mutually  exclusive  and

collectively. If you add all of them, then they should make the total problem. So, that is

how we do the branching, that is the first step. 



(Refer Slide Time: 26:02)

Now, after branching next stuff is bounding. Now, I have shown you one type of finding

binding bound values,  but  there  could be other  methods.  So,  bound is  an  optimistic

estimate of the solution of a problem, solving the LP relaxation of a sub-problem will

yield an optimistic estimate of solution, so, you see if it is an integer problem, and we

can solve an LP then LP can give a bound value. It is not necessary that all the time you

have to solve an LP only like the example, I gave you can find bound by certain other

methods also, but then typically if we are solving a non-linear sorry non integer linear

programming problem, and we have a non-integer problem solution.

Then the LP solution can give us a lower bound for minimization, and an upper bound

for maximization right. So, LP relaxation of an ILP is a valid bound, and bounds can also

be found in other ways like,  assignment solution provides a bound for the travelling

salesman problem, later on we shall see. If you are trying to find out travelling salesman

problems solution, then we can solve an assignment problem, and the solution; we find

then we use it as a bound for the travelling salesman problem.



(Refer Slide Time: 27:28)

Like these ILP that we solved in our previous lecture right. So, this problem we have

solved by simplex, and then we found the optimal solution was X 1 star equal to 10 by 3,

X 2 star equal to 0, and Z star was 2 X 1 plus X 2 equal to 20 by 3 the present optimal

solution is non integer right. So, an upper bound for the ILP problem will be 20 by 3

right. So, the LP solution would actually be used as a bound all right, so that is how it is.

(Refer Slide Time: 28:10)

And when it comes to fathoming three situations may arise, when we no longer need to

resort to branching. What are those three solutions? A sub-problem is fathomed if it is LP



relaxations optimal solution is integral that means we find an optimal solution and we

find it is an integral solution. It is bound is worse when the best solution found so far so

you see something becomes fathomed that we find a bound. But then there are some

other bound at a different problem which is providing a better value, so lower than the

lower bounds lowest of the lower bounds, or elsewhere. 

So, we found a lower bound here, which is higher than a lower bound elsewhere, so, that

means  this  one  is  fathomed.  And  the  LP relaxation  has  no  feasible  solution  by  LP

relaxation we found an infeasible solution that means, also we can stop there right, so by

making use of the bounds the branching and the fathoming right.

We can solve the branch and bound algorithm we can make use of, and in our next class

we shall take proper you know examples of how to solve branch and bound. You know

use branch and bound techniques to solve general purpose problem is it alright.  And

specifically further we shall spend more time in solving travelling salesman problem by

branch and bound technique right in further classes right. So, we stop here.

Thank you very much.


