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Lecture — 50
Time Series Modelling - Volatility Modelling

Hello, everybody. This is Rudra Pradhan here. Welcome to Engineering Econometrics.
We will continue with Time Series Modelling again and that too the same Volatility

Modelling.
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Volatility Modelling
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We stopped earlier that too the requirements of ARCH and GARCH estimation. We have
already highlighted the ARCH structures and the GARCH structures and the kind of you
know difference, the kind of you know need and the kind of you know flow how to start
the process and then we like to know what is the kind of you know estimation

mechanism.
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Estimation of ARCH / GARCH Models (cont’d)

+ The steps involved in actually estimating an ARCH or GARCH model are as follows

1. Specily the appropriate equations for the-mean and |\ the variance - e.g. an|AR(1)-
GARCH(L1) model: y,= et e e "'N“].ﬂr:]

o= a t aul, o
2. Specify the log-likelihood function to maximise:

I I ¢ 5 L 1,1
L= —Elngt EN)—EZIUE.{"[ }—EE{}', ~p=fv,) o]

§ il
3. The computer will maximise the-function and give parameter values and their standard emrors
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Because compared to autoregressive model then moving average models and ARIMA
model these two clusters are non-linear structure that is why this slightly different from
the estimation process compared to ARIMA model. So, it is technically step by step
process like we do in ARIMA cluster. In specific we start with first mean equation that is
here with respect to one variable and that to let us say AR 1. AR 1stands for
autoregressive one and which is the first end entry to the ARCH and GARCH modelling

and for that we like to estimate these equations.

y t is the original variables and y t minus 1 is the log variables and as usual we can run
the model like simple regression modelling that too through OLS mechanism and error
must behave like this and after getting the estimated y t we can have the error term u t
and square of the error term and error variance and then we can connect like this sigma
square equal to alpha 0 plus u square t minus 1 and the coefficient alpha 1 again beta

coefficient with respect to sigma square t minus 1.

Now, this is step 1 and in the step 2 this is what the model we need to estimate and in the
first end this is the mean model and that to can be followed with the OLS and this is non-
linear model. So, we cannot actually directly go through OLS rather we use a technique
called as you know maximum likelihood estimations that is what technically called as a
MLE maximum likelihood estimation technique and the general framework of maximum

likelihood estimation is like this starts with the 1 equal minus T by 2 log 2 pi to that is



actually collage with the normal density function and minus 1 by 2 sum of log sigma
square and minus 1 by 2 y minus mu minus psi t minus by sigma square that is what the
kind of you know starting and the software with actually maximize this function and give

the parameters values and their standard errors.

So, that means, technically we look here the values of you know parameters that too

alpha 0 alpha 1 and beta that is that is the kind anything we are supposed to have here.
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Parameter Estimation using Maximum Likelihood

Consider the bivanate regression case with homoscedastic erors for
simplicity: — y, = f, + f,x, +1,

+ Assuming that 1, ~ N(0,&°), then y, ~ N(f +f.x, | &) so that the

probability density fimction-for-a normally-distributed random variable

with this-niean and variance is given by ; | :

i : 1 | 1@, =g=px)y] \
f(n|B +Box,0°) = —==enpl - =L

| ' . m,lri: | 2 a° J i

+ “Sugeessive values of y, would trace outthe-famitiar bell-shaped curve.

Assuming that u, are 1id, then y, will also be iid.
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So, accordingly moving forward will have the equation like this is another kind of you
know structure where we are connecting the bivariate regression y t as a function of x t.
If you compare with the previous ones it is y t as a function of y t minus 1 and here y t
depends upon another independent variable and as usual you can go for this is this is the

mean estimations and that to have through OLS mechanism.

Assuming that error term is normally distributed with 0 mean and unit standardization as
a result the probability density function for a normal distributed random variable with
this mean and variance is given by this particular structures, ok. So, that means,
technically this is what the exact you know which we have already highlighted the
previous slide that is with reference to the mean equations this one that is what you y t
minus. So, this is what the mean equation and here the same things this is what the mean

equation.



Now, successive values of y t would trace out the familiar bell shaped curve that is the n
d f assuming that error term u t r identically independent distributed which is 0 mean and
unit variance and then y 2 will also similar structure followed by normally distributed

with the mean 0 and unit variance.
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Parameter Estimation using Maximum Likelihood (cont’d)

'1I_'11cnlllm joint pdf for all the y's can be expressed as a produet of the individual density
unclions

S0 Yen ¥ B+ BK 00 = (0| + BX,01) OB + X007

Q _— SR+ BX
vl =1/]f+ B.X,.0%)

—_—

Substituting into equation (2) for every y, from-equation (1),

1 1 L0 -f- B )
—E\I{E}‘r “‘I’['EZ— f= ‘

i+ fx,.a') =—
o "l a

SOV ¥y
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And, then we have a joint probability density function for all the y’s and that can be
expressed as a product of the individual density functions. So, ultimately you will have
the structure like this. And, then after simplification the particular setup will transfer into
the maximum likelihood estimation process that is what the maximum likelihood

estimation.

So, now again taking the clue from this equation we can proceed further.
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Parameter Estimation using Maximum Likelihood (cont’d)

+ The typical situation we have is that the x, and y, are given and we want 1o
cstimate 3, &, o If this is the case, then f{#) 1 known as the likelihood
function, denofed LF(S,, ff, ), so we write

X "J: 1 L&, -4 - B’
LF }k i.. = . == ! -
W e ST

T

+ Maximum likelihood estimation involves choosing parameter values (f,
f, &) that maximise this function.

+ We want to differentiate (4) wrt. i, B, but (4) is a product containing 7
terms.
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And, the whole transformation will be likelihood functions that is with respect to beta 1,
beta 2 and the standard deviation sigma square and maximum likelihood estimation
involves using parameter values that maximize this functions; that means, technically as
usual like OLS MLE procedure is also similar where we can actually optimise with

respect to beta 1, beta 2 and sigma square.
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Parameter Estimation using Maximum Likelihood (cont’d)

Sinee max f(r) = maxlog( f(x)). We can lakelogs of (4).

Then, using the various laws for transforming functions containing loganthms,
we oblam the log-likelihood function, LLF:
P 1&(y, -4 -fx )
LLF =-Tlogor - log(2m) -2 ZM
LT : & a’
+  which is equivalent to =

ST T IS0y, - B - fox )
LLF ——?logrr -5|ng(2:r)-5§g—:

PR

Differentiating this equation w,

(v, =B -fx)2.-1
2

(i)

. NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

T o YWMNE

So, that means, technically. So, we like to differentiate with respect to dLF which d beta

1 with respect to d beta 2 and with respect to d sigma square like you know as usual OLS



mechanism and by setting these three equation to 0 and simplify will have the values of
the parameters beta 1, beta 2 and beta 3. So, that means, technically if you move further
as for the you know given instructions so, will have like this and the first one that to

differentiate is with respect to dLLF by d beta 1 is this much which is equal to 0.

(Refer Slide Time: 09:30)

Parameter Estimation using Maximum Likelihood (cont’d)

daLF | lz (v, =B -Px)l-1x,

a2 a }
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Setting all equations to zero to minimise the functions, and putting hats above the parameters to
denote the maximum likelihood estimators,

ZU‘: = Jifl g J‘}:-r. )=0
Z ¥, - z ;’-:’, _Zﬂ_--l'. =0
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Again dLLF by d beta 2 which is this much, that means, this value should be equal to 0

and again dLLF by d sigma square which equal to this much. So, all will set to set to 0.
So, that means, technically we have three parameters as usual actually like you know
trivariate a simple linear modelling and we have here this is the first one which we can
actually which we can have here you know with respect to beta 1, ok. So, that means,
technically this 1’s which is also equal to 0. And, then so, technically so, this equal to 0
this equal to 0 and this equal to 0.
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Parameter Estimation using Maximum Likelihood (cont'd)

ZUE._JF"' _»‘r}!fr_)i: 0
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And, if you simplify then we have three different equation here, ok. So, the first one, so,
this is this is what we have received that is with respect to the first equation this one and
then this second equation and after doing all the simplification finally, we will be have
beta 1 beta 2 and sigma square. So, that means, technically you will have beta 2 like this

and sigma square like this.
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Parameter Estimation using Maximum Likelihood (cont’d)
- i /
+  Rearranging, & ?_%Z{_II’, - ,‘E’l_- fay Vi ‘
oo
= TEuj

+  How do these formulae compare with the OLS estimators?
The OLS estimator was b

+ Therefore the ML est
consistent.

But how does this help us in cstim:llirl&_!}‘_lgm;ed:isﬁc models?
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Then, again after simplification if you move further then sigma square equal to simply u

square t that is what called as you know error variance. Compared to the OLS



mechanism which we have already received sigma square, ok. So, technically that time
we reported sigma square equal to summation e square y n minus 2 for y variate, n minus
3 for trivariate and this is a trivariate structural together. But, maximum likelihood
estimation is having only this much sigma square equal to summation u square by e.
Now, the question is the how do these for kind of you know the kind of you know value

you know have a connection with you know OLS estimators?

That means technically what I have written here so, it is here all. So, it is actually t minus
k that is what the degree of freedom. So, therefore, maximum likelihood estimator of the
variance of the disturbances is biased although it is consistent. Now, the question is the
how does this help us in estimating heteroscedastic models that is the big deal which you

need to highlight here?
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Estimation of GARCH Models Using Maximum Likelihood

+ Nowwehavey, = p+ gy, +u, 1~ N0, o)
s ==

o=t a’ | +ﬁ\‘?_-.|:

T ]l "
L==-=log(27) -~} log(a, ) ==} (3, —p~@, ) /o]
el zgngt ) 2;:,. =) )
+  Unfortunately, the LLF for a model with time-varying variances cannot be maximised analytically, except in
the simplest of cases. So a numerical procedure is used to maximise the log-likelihood function. A potential
problem: local optima or multimodalities in the likelihood surface.

+ The way we do the optimisation 1s:
1. Setup LLE,
2, Use regression to get initial guesses for the mean parameters.
3. Choose some initial guesses for the conditional variance parameters.

4. Specify a convergence criterion - either by criterion or by value.
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Now, coming to the you know mean equation again which you start from beginning that
to y t as a connected to log of y t minus 1 where error term follows mean of the error
term and you know unit variance and followed by sigma square equal to alpha 0 alpha 1

u square t minus 1 and beta sigma t minus 1 and then the likelihood functions, ok.

However, the likelihood function for a model with time varying variances cannot be
maximized analytically, except in the simplest of you know cases. As a result, the
numerical procedure is to maximize the log like log likelihood functions. Technically, the

potential problem is to look for local optima or multi modalities in the likelihood surface;



that means, technically the optimisation procedure will follow to setup the likelihood
functions use regression to get initial values of the parameters mean parameters which

use some initial structure for the conditional variance parameters.

And then finally, specify a convergence criteria either a criterion or by a value, ok. So,

that is what the procedure you have to follow.
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—ﬂl_

Non-Normality and Maximum Likelihood

+ Recall that the conditional normality assumption for u, s essential.

* We can test for normality using the following representation
u=v0o, v, ~N{0,1)

The sample counterpart is % =t * et 8,0y

* Are the Y, normal? Typically v, are still leptokurtic, although less so than the g, Is this a
problem? Not really, as we can use the ML with a robust vanance/covariance estimator. ML
with robust standard errors is called Quasi- Maximum Likelihood or QML.
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Now, to extend these ones we can recall that the conditional normality assumption for u
is essential. So, we can test for the normality using u t equal to another a term v t and the
standard deviation sigma t, where v t will follow normally distributed mean 0 and unit
variance. And, the some sample counter parties sigma t equal to alpha 0 square root of

alpha 0 plus alpha 1 a square t minus 1 and alpha 2 sigma t minus 1.

So, as a result v t equal to simply u t by sigma t and hence the estimated of v t will be
estimated of u t by estimated of error you know sigma. Now, the question is whether the
estimated v is normal? In reality v estimation are still leptokurtic although less so that
hence compared to u t. So, now, question is this a problem? Frankly it is not really, as we
can use the maximum likelihood which are robust variance and I think or you know can
say covariance estimator. So, maximum likelihood with robust standard errors is called

quasi maximum likelihood or simply called as you know QML.
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Extensions to the Basic GARCH Maodel

* Since the GARCH model was developed, a huge mumberof extensions and variants have been
proposed. Three of the most important examples are EGARCH, GIR, and GARCH-M models.

+ Problems with GARCH(p,q) Models:
- Non-negativity constraints may still be violated

= GARCH maodels cannot account for leverage effects

*  Possible solutions: the exponential GARCH (EGARCH) model or the GIR model, which are
asymmetric GARCH models.
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Again taking the clue, we have the GARCH model and where a huge number of
extension and variants have been proposed, that is what I have already highlighted. That
means, the GARCH clusters we have actually a basket that is starting with you know
simple GARCH, then EGARCH, GJR and GARCH-M models. So, problem you see
problems within a GARCH p, q models first the non negativity constraint may still be
highlighted and GARCH models cannot account for you know the leverage effects which
you can take care through EGARCH or GJR. Possible solution actually that is what the
you know kind of you know structure through EGARCH that is called as exponential
GARCH and the kind of you know GJR models which are actually simply called as you
know asymmetric GARCH models.

So, let us see how is this particular you know structure that is with respect to EGARCH,
GJR and GARCH-M models and in between we have already highlighted a component
called as a IGARCH. So, that means, we have actually plenty of baskets.
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The EGARCH Model

* Suggesied by Nelson (1991). The variance equation is given by

—_——

=

\

* Advantages of the model ' =
— -
- Since we model the log(a?), then even if the parameters are negative, o1
will be positive.

= We can account for the leverage effect: if the relationship between

volatility and returns is negative, 7 will be negative.

' NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES
7 o YWAN

And starting with the first EGARCH that is actually the extension of you know GARCH
model. So, here the general framework of you know EGARCH is like this just you know
extension, where error variance is connected with the square of the error variance and
then the additional part which will we have here is like this that is just you know
extension to this case. Earlier you know we have y square t minus one and g square t
minus one now it has some kind of an extension with respect to ut and gt sigma t. So,
the advantages of this model are since we model the log sigma square even if the
parameters are negative then sigma square will be positive. So, that is why some

adjustment need to be taken care.

We can account for the leverage effect if the relationship between volatility and the
returns is negative then that will be the negative one. So, for that means, this particular
component. So, the there is the you know technically another parameter which can

actually bring the kind of you know difference in the case of you know EGARCH.
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j The GJR Model

* Dueio Glosten, Jaganathan and Runkle|

5 - AL AN
a = a e, +pea Tl
—

where [ = 1l <0

=0 otherwise
+ Fora leverage effect, we would se¢ > (.

+ Werequire @ + 720 and g, 2 0 for non-negativity.
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And, then the other form is called as you know GJR model it a actually developed by
two three great statistician according to their name. And, the typical structure of this
model is like this, it is again extension this part is actually GARCH and then this is the
extra extension which we like to have and the I t minus is the kind of you know
connecting point. It is it is like you know two different break ups, that is what the kind of
you know kind of you know leverage effect 1 is the I t minus 1 equal to 1 if u t minus 1
less than 0 if not it is equal to 0; that means, when u t minus 1 greater than greater than

or equal to 0 then I t minus 1 represents 0 value.

That means by default we can have another you know variable which we can include into
this particular you know GARCH model and for a leverage effect we would see whether
the particular parameter only positive one. The need is that alpha 1 close the leverage
parameter should be greater than equal to 0 and alpha 1 for you see know non-negativity

that means, that is this component that is the structure of you know GJR.

Of course, you know this is actually a technical kind of an understanding, but ultimately
if we use the software; software by default will give you the kind of you know results
very easily just we to have to set the mean equation and then you go to the variance
equation by setting these you know ARCH and GARCH models. If you ARCH the
software to give the ARCH estimations and that to you have to just fix the log length of

course, you know manually you can put one after another and you know test, but you



know software by itself will give you different results if you starting it putting you know

log variance.

Similarly, in the case of you know GARCH and again you can have a different GARCH
outputs by changing the log order 1 1, 2 2 and so on and again we can ask the software to
give EGARCH results and GJR results and the kind of you know GARCH and types of
you know models. So, all are you know it is there so, just you have to follow up it and

then you can have the estimated results.

So, that means, technically the model is very clear or here the major you know kind of
you know structure is that you know we are predicting a kind of you know engineering
variable that to through a error component and the starting is actually the variable can be
first linearly connected with you know the log variable and then have the error term. And

through the error term again the kind of you know prediction we are doing.

So, you like to check how effective is this particular process to predict the y variables or
we have a structure y t which can be influenced by some of the independent variables not
necessarily that log variable and then again that will be the mean equations and you can
have the error term and the error term can be used as a instrument again to predict or to
you know you to forecast the particular you know dependent variable. The way I have
cited the example you know error penetration or something kind of you know rho density
that to with respect to different variables like road investment in other transportation and

SO on.

So, that is what the kind of you know different structure of the models through which

you can generalize, ok.
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An Example of the use of a GJR Model

+ Estimating a GIR model, we obtain the following results.

¥, =0172
(3.198)

o =143 +0.0150, +0.4980, " +0.604’ /.|
(16372) (0437) (14999) (5.772)
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So, for example, if you go through you know estimation process the mean equation will
be like this and the variance equation will be like this. Of course, there are lots of you
know reliability checks or you know robustness checks to do this and first hand
requirement is actually as usual to check whether the parameters are statistically
significant and then the overall fitness. And, as a result the particular error variance can

be used as an instrument to predict the kind of you know engineering variables.

(Refer Slide Time: 25:49)
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News Impact Curves

The news impact curve plots the next period volatility () that would arise from various positive and negative
values of u, ;, given an estimated model,

News Impact Curves for S&P 500 Retumns using Coefficients from GARCH and GIR Model Estimates:
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Now, this is another kind of you know you know see kind of you know market
information which can be used as instrument in the case of you know ARCH and
GARCH model and you know different kind of you know GARCH model. This is stock
market problem technically and usually this kind of you know models more frequently
used in financial engineering rather than you know say for other engineering like you
know civil engineering or some kind of you know mechanical engineering etcetera. So,

that is that is what the kind of you know structure.

(Refer Slide Time: 26:26)
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GARCH-in Mean

+ We expect a risk to be compensated by a higher return. So why not let the retum of a security be
partly determined by its risk?

+ Engle, Lilien and Robins (1987) suggested the ARCH-M specification. A GARCH-M model would
be
V= pt dat g 1 ~N(0.6)
ai=at g |+ﬁﬁ,_l:
& can be mterpreted as a sort of nisk premium.

+ Itis possible to combine all or some of these models together to get more complex “hybrid” models -
e an ARMA-EGARCH(1,1)-M model
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And, coming to the kind of you know structure because by this you know we use this one
because it this one will actually create a two different you know structure altogether. So,
that means, if you look into the kind of you know shape there is one structure declining
the another structure is increasing. So, by default you like to find out the kind of you
know structural change which can affect the ultimate you know dependent variables.
Since the behaviour of the variable will changing route from one direction to another
direction. So, the essential structure of GARCH model can be you know can be modified
accordingly provided if the variable behaviour is like this otherwise you can simply you

know estimate with you know ARCH or GARCH model.

Then GARCH you know GARCH in mean kind of you know structure we expect a risk
to be compensated like again in the financial engineering you know scenario. So, why

not let the return of a security be partly determine by its risks. So, technically so, the



model is actually ARCH-M specification then GARCH specification; that means,
technically we start with y t again mean equation and the kind of you know variance
equations. But, here delta can be interpreted as a sort of you know risk premium. Again it
is impossible to combine or some of these models together to get more complex that the
hybrid models like you know ARMA EGARCH 1, 1-M model. But, that is the thing
which you can have in the process; means it is a kind of you know more complex kind of

you know character through which you can you know do the you know processing.

(Refer Slide Time: 28:27)
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What Use Are GARCH-type Models?

+ GARCH can model the volatility clustering effect since the conditional
variance is autoregressive. Such models can be used to forecast volatility.

+ We could show that
Var (y, | Vore Vs ) = Var (u, | Upy ¥y o)

So modelling a7 will give us models and forecasts for y, as well,

+ Variance forecasts are additive over time
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Now, so far a use is concerned what type of you know GARCH models we need all these
things. So, GARCH can model the volatility clustering that too study the effect since the
conditional variance is autoregressive. Such models can be used to forecast volatility
simply. So, the procedure is actually you have to find out the variance factors and so,
modelling will be done through actually error variance and that itself will be used to
forecast the main variable, let us say y t. So, variance forecast are you know additive
overtime. That is what the you know means we can say that it is the big advantage of this

particular you know process, ok.
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An Example of the Application of GARCH Models
- Day & Lewis (1992)
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So, now you know some of the kind of an example which you can bring here that you
know usually the main aim of this particular you know cluster is you know to consider
the you know out of sample forecasting performance that of you know GARCH and
EGARCH models for you know predicting the stock index volatility, particularly the
case of you know financial engineering, an implied volatility that is the market

expectations or the average level of volatility of an option. Now the question is which

Purpose
To consider the out of sample forecasting performance of GARCH and
EGARCH Models for predicting stock index volatility.

[mr]iud volatility is the markets expectation of the “average” level of
volatility of an option:

Which is better, GARCH or implied volatility?

&
Data
Weekly closing prices (Wednesday to Wednesday, and Friday to Friday) for
the S&P100 Index option and the underlying 11 Mareh 83 - 31 Dec. 89

[mplied volatility is caleulated using a non-linear iterative procedure.
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one is which is better; GARCH or implied volatility?

So, actually it is the kind of you know situation you to check and over the time you have

to compare and one example which you have citing here it absolutely depends upon you

know data structure.
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The Models

The “Base” Models
For the conditional mean

Ry—Ry=hy+ }‘IJE"'”:
F__,_._.—-—'—‘_'__—' d
b =a, +(‘(1";‘1 +Pih,

And for the variance

or - :

Wiy ey 2 ‘II j
In(h, )= e, + & Infh, )+ e (0 +7 == D

v ’,, i \'rJ' i x)

where

R, denotes the retum on the market portfolio

Ry, denotes the nisk-free rate

h, denotes the conditional variance from the GARCH-type models while &

denotes the implied variance from option prices
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And, starting with this you know data structure we start with your know mean equation
and then the variance equation here. So, this base models will be like that you know the
mean equation and then we can have the variance equation and then the you know kind

of you know its extensions.

So, now it is actually extension of you know capitalized pricing model, ok, sorry written
on the market portfolio and denotes the risk free rate. So, h t denotes the conditional
variance from the GARCH type models while sigma square t denotes the implied
variance from the option prices. That is the kind of you know say actually, this kind of
you know model is highly useful for you know financial engineering you have already
highlighted and so, that means, technically we must have a time series data and some of
the kind of you know you know kind of you know extensor or information which may be

highly actually useful for this kind of you know modelling.
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] The Models (cont'd)

Add in a lagged value of the implied volatility parameter to equations, we have

h =a, +au’, + fh G+ ol

T ——

HII‘I _[E]H

h,

In(h\) =, + f, In(h, ,]+tz,(ﬂh;'—'+ ,{ )+ (e )

Ty

* Weare interested in testing Hy 6=0
+ Also, we want to test Hy g = 0and ff, =0
+ and Hy: e =0and f,=0and 0=0and y=10
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Again, adding a lagged value of the implied volatility parameter to equation we have the
following again and that is what the kind of you know you know the extension. Here, we
have these are conditions null hypothesis to set the delta equal to 0 corresponding to this
one and then at rest alpha one equal to 0 and beta 1 equal to 0 and further we have
actually the condition with respect to this model. So, these are all you know as usual
procedure to set the null hypothesis and then as usual go by the estimation process we

can have the following you know outcome.

(Refer Slide Time: 32:17)
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In-sample Likelihood Ratio Test Results: GARCH Versus Implied Volatility

Ry =Ry =4+ Ak +u (878)

b =ay+au;, +Bh (8.79)

b =ay+au, + fh +d0), (880

I =a, +r’hf| (3817
Equation for ~ J, A axll’ g B a I.ugfl. fr

Varianee /
specification ~ / |
(8.79) 00072 0071 5428 0093 0884 - (ffs?_ill 17.77

(0003) (@01 (165) (084) (817)
(881) (00015 0M3 2065 0266 0068 0318 |'?'|'fs.!ll-l

(0.028) (0.02) (298) (LI17) (0.59) (3.00)

(8817 00056 <0184 0593 - - 0.581 %}yllﬂl
(0001) (0.001) (150) (294)

Notes: f-mitios in parendheses, Log-1 denotes-the-muximised value of the log-likelihood function in

each ense. denodes the valuz of the test statstic, which follows a (1) in the case of (8.51) restricted

1o (8.79), and a p(2) in the case of (8.81) restricted 1o (8.31°). Source: Day and Lewis (1992).

Reprinted with the permission of Elsevier Science
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And, since we have used a particular data set and then you know various types of you
know model which we have here starting with the mean equations, variance equations
and the extensions, EGARCH and a the kind of you know implied volatility. So, we have
the estimation process and then you are suppose to check whether the particular
parameters are statistically significant and then the log likelihood ratio the chi squares.

So, these are all actually will support the particular you know model.

Ultimately, so, we like to check whether these parameters are you know statistically
significant of. That means, we can say that you know the volatility component will be
very useful for you know predicting a kind of you know engineering variables. So, that is

about the kind of you know case.

(Refer Slide Time: 33:10)
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In-sample Likelihood Ratio Test Results: EGARCH Versus Implied Volatility

Ru - Ry =yt Ak, 0, (8.78)
N,y ] 2 =
Inf b, y=ay,+ B Iolh )+ai¢ ."I. tr ’l' | | ) (8.50)
i BV L
I h, )= a Aol b )+a (@ LIT || L |'H‘- J+éh(al) (8.82)
§ et Lt it | 5 e | N B CLSE S
I hl)y=a,+8e’) (8.82")
tatien for A Ay agxlo ", [} ¥ i Log-L r!
ariance 4
cification
{c}) 00026 0.094 -3.62 0529 -0.273 0357 . 176436 £.09
(-0.03) {0.2%) (-2.90) (1.38) (4.13) (a7
(e} 00035 0076 -2.28 0371 -0.282 L] 0.351 T80.480
{0.36) (-0.24) (-1.82) (Lag) (4.34) (1.839) (182)
ie’) 00047 -0.119 -2.76 - - - 0667 165034 ingy
(0.71) (-0.43) {(-2.30) (4.01)
Naotes: f-ratios in parentheses, Log-L denotes the maximised value of the log-likehhoad fancnon in
each case. p* denotes the value of the test statistic, which follows a 2°(1) in the case of (8.82) restricted

io (3.80), and a p'(1) in ihe case of (B.82) resiricied fo (8.31°), Source: Day and Lewis {1992)
Reprinted with the permission of Elsevier Science
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And, again if you extend this models we have actually plenty of results, that is that is the

kind of you know extension to EGARCH versus you know implied volatility, ok.
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Conclusions for In-sample Model Comparisons & Out-of-Sample Procedure

+ IV has extra incremental power for modelling stock volatility beyond GARCH.
+  But the models do not represent a true test of the predictive ability of V.
+  So the authors conduet an out of sample forecasting test.

+ There are 729 data points. They use the first 410 to estimate the models, and then make a 1-
step ahead forecast of the following week’s volatility.

+ Then they roll the sample forward one observation al a time, constructing a new one slep
ahead forecast at each step.
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So, that means, technically we have actually variety types of means various types of you
know volatility modelling; that means, we have lots of variety. So, far so far as ARCH
and GARCH clusters are concerned and then on the basis of this you know models you
can actually predict some of the engineering variables more specifically this kind of you
know models are more frequently used in actually financial engineering what I have

already highlighted categorically.

So, that means, on the top of this discussion that too in time series modelling, so this is a
series of models which can be frequently used to predict some of the engineering
variables, where actually volatility is an issue you can simply find out the standard
deviation and then in a check whether you know there is you know high kind of you
know unstability or something like that so that you know you can use this models and
you know predict the kind of you know engineering output as per the particular

requirement and the kind of you know need. With this we will stop here.

Thank you very much.



