Design and Analysis of Experiments Prof. Jhareswar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur

Lecture – 60 Response Surface Methodology Using MINITAB

Welcome to all in today's video lecture. Today, we are going to show, you the response surface methodology using MINITAB. To begin with this things, let me introduce myself, I am Shobhan Sarkar the PhD student in the department of industrial and systems engineering, IIT, Kharagpur and also the teaching assistant of the subject of design and analysis of experiments.

So, to begin with these things let us have a glance to the contents page.

(Refer Slide Time: 00:44)

Here the response surface methodology with a small example has been given.

(Refer Slide Time: 00:49)

				conditions that maximize cess yield: reaction time
and reaction temper			ole influence pro	cess yield. reaction time
and reaction temper		D. Adam	Beetler	
	Sn	Reaction time	Reaction temperature	Yield
	1	30	150	39.3
	2	30	160	40.0
	3	40	150	40.9
	4	40	160	41.5
	5	35	155	40.3
	6	35	155	40.5
	7	35	155	40.7
	8	35	155	40.2
	9	35	155	40.6

And then differences has been produced. So, coming to the coming back to the example as we can see and we have gone through a many times in the normal video lectures.

So, this example has been given for your clear understanding the main focus of this video lecture is to demonstrate how to use MINITAB in order to analyse the results experimental results of any situation.

So, situation is the problem statement is given a chemical engineer is interested in determining the operating conditions that maximize the yield of process that is this to controllable variables influence process yield that is a reaction time and the reaction pressure reaction temperature there is given here. So, 9 observations are made.

(Refer Slide Time: 01:42)

	Lat Graph Editor Tools Win Benc Statistics • Repression • ANIONA •		-		0 () () 0 T ()	0 \ -	in A	121-1	1.12	2414		_	_	_	_	_	_	_	_	(10	
3/30,	Control Charles Constity Transis Ratiobility/Survival Multi-source Trans Series Tables Nonparametrics Equivalence Tests Proces and Sample Size				Counte Reag Solice Country Analysis Rea Pradict Factorial Pro Contour Pro Surface Pro Overland Co Response C	ett (K., K., K., Internet Pick	ue Suefer e 1	in the second			men Surfac	e Design rom data in	m _a								
Nucleated 1 ***		-	-	-	-	-	-	-	_	-	_	-	-	_	-	-	-	_	-		-1-00
C23 C2 In Reaction 2 3 4	C27 time Reaction temperature 30 150 30 160 40 150 40 150 30 160 40 150 30 150 30 150 30 150 30 150 35 155	G28 Vield 39.3 40.0 40.9 41.5 40.3 40.3 40.5 40.7	C31	C30	OI.	C12	CI I	CH4	63 4	CH4	637	638	. (39	(40	648	642	643	644	(4)	(.46	

So, now we can see first this is our data set. So, initially, we have to copy and paste their data set into one excel file.

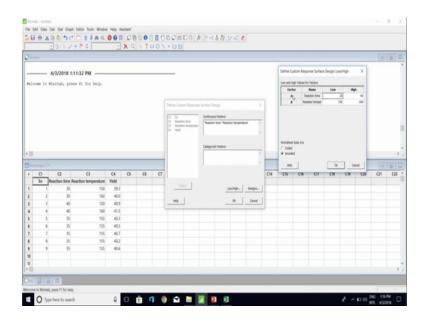
(Refer Slide Time: 01:57)

ile V			ias Data Review View ACROBAT		t yes ward to do.	net - Licel			_		Σ Autofo	Sign in §
	Copy *		K K = = = ⊕ + Primap led ▲· = = = + + H Kitherpe & Car	General		0 92 1			Good Check Cell	insert Delete F	E Fill -	Sort & East &
	Format Painter	MAN ALCON	 A state of the sta	5 100	Form	atting * Table *	5.9			· ·	. ¿Cear	Filter + Select
		X V A M										
à	A	В	c	D	E	F	G	н	1	J	К	L
Γ	Sn	Reaction time	Reaction temperature	Yield								
	1	30	150	39.3								
	2	30	160	40								
	3	40	150	40.9								
	4	40	160	41.5								
	5	35	155	40.3	-	;	3/24/2018	8:48:48 AN				
	6	35	155	40.5								
	7	35	155	40.7			W	elcome to M	Ainitab, pre	ess F1 for he	lp.	
	8	35	155	40.2								
	9	35	155	40.6	1	Response Su	urface Regr	ession: Yield	d versus Re	action time	Reaction t	emperatur
1			ò									
2						Th	e following	terms cann	not be estin	nated and v	vere remov	ed:
3							Read	tion tempe	rature*Rea	ction temp	erature	
4												
5												
5								Ana	lysis of Vari	ance		
7												
	_	Sheet2 Sheet3 (0				1.4		Matrinii Court			

This one; so, from this we have to copy it and paste into the MINITAB window. Next, coming to the point of stat under the stat doe option is available. So, as we are analysing through the response surface.

(Refer Slide Time: 02:26)

_	<u>+</u> (Regression ANOIA	-	XQ	810	101															_
Sesson.		ANDIA P	Factorial																		
Walcome	- 4/3	Control Charts P Quality Tools P Reliability/Survival P	Misture Taguchi	e Surtaig	• %	Create Resp Define Custo Select Optim	om Respons		eign.												
		Muthariate Filme Series Filme S	Nodily I		•	Analyze Res hedict	ponse Surfa	or Design.,													
		Nonparametrics Equivalence Tests Power and Sample Size			8	lactorial Pio Contour Piot Surface Piot. Overlaid Cor															
			_	_		Response Og					_	_	_	_	_	_	_	_	_		
Workshe					*	Response Og	plinipe.		(1)	(1)	(1)	(1)	<i>(</i>))	(1)	(1)	(1)	(14	614	C10		
Workshe	C1 C		C4 Vield	CS				(9	C10	CII	C12	CIJ	СМ	CIS	C16	C17	CII	C19	C20	(21	(1) (2)
Workshe	C1 (n time Reaction temperature	Vield	CS	*	Response Og	plinipe.	(9	C10	CII	C12	CIJ	C14	CIS	C16	C17	CI	C19	C20		
Workshe	C1 (n time Reaction temperature 30 150	Vield 39.3	G	*	Response Og	plinipe.	0	C10	CII	C12	C1)	CH	CIS	C16	C17	CH	C19	(3)		
Workshe	C1 (n time Reaction temperature 30 150 30 160	Vield 39.3 40.0	C5	*	Response Og	plinipe.	(9	C10	C11	C12	C13	CM	CIS	C16	CIT	CH	C19	C30		
Workshe C S 1	C1 (n time Reaction temperature 30 150 30 160 40 150	Vield 39.3 40.0 40.9	G	*	Response Og	plinipe.	0	C10	C11	cų	CIJ	C14	CIS	C16	C17	CH	C19	C39		
Workshe C S 1	CI C Sn Reaction 1 2 3	n time Reaction temperature 30 150 30 160 40 150 40 160	Vield 39.3 40.0 40.9 41.5	63	*	Response Og	plinipe.	()	C10	CII	C12	CU	CM	CIS	C16	C17	CH	C19	C30		
Workshe C S 1	CI C Sn Reaction 1 2 3	n time Reaction temperature 30 150 30 160 40 150 40 160 35 155	Vield 39.3 40.0 40.9 41.5 40.3	C5	*	Response Og	plinipe.	(9	C10	CII	C12	CIJ	CM	CIS	C16	CIT	CH	C19	C20		
Workshe C S 1	CI C Sn Reaction 1 2 3	n time Reaction temperature 30 156 30 166 40 156 40 166 35 155 35 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5	CS	*	Response Og	plinipe.	(9	C10	CII	CI2	CIJ	CM	CIS	C16	CIT	CH	C19	C20		
Workshe * C 5 1 2 3 4 5 6 7 7	CI C Sn Reaction 1 2 3	n time Reaction temperature 30 156 30 166 40 156 40 166 35 155 35 155 35 155	Vield 39.3 40.0 40.9 40.9 41.5 40.3 40.5 40.5	CS	*	Response Og	plinipe.	0	C10	CII	CI2	CIJ	CI4	CIS	C16	CIT	CII	C19	C20		
Witoriahe • C 5 1 2 3 4 5 6 7 8	C1 C Sn Reaction 1 2 3 4 5 6 7	n time Reaction temperature 30 156 30 166 40 156 40 166 35 155 35 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.5 40.7 40.2	CS	*	Response Og	plinipe.	(9	C10	CII	CI2	CIJ	CIA	CIS	C16	C17	CI	C19	C20		
Within the second secon	C1 C Sn Reaction 1 2 3 4 5 6 7	time Reaction temperature 30 150 150 30 160 150 40 150 151 35 153 153 35 153 153 35 153 153	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.5 40.7 40.2	CS	*	Response Og	plinipe.	(9	C10	CII	CI2	CIJ	CM	CIS	C16	C17	CI	C19	C20		
Workshe	C1 C Sn Reaction 1 2 3 4 5 6 7	time Reaction temperature 30 150 150 30 160 150 40 150 151 35 153 153 35 153 153 35 153 153	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.5 40.7 40.2	CS	*	Response Og	plinipe.	69	C10	CII	CI2	CU	CM	CIS	C16	C17	CIB	C19	C20		


So, response surface under the doe tab, we have to select and then also under the response surface, we have to first define the custom response surface design.

(Refer Slide Time: 02:38)

		700	2+22	<u>×</u>	XQ	TO	0 \	• 66			_	_	_	_	_	_	_	_	_	_
	101																		0	
			1:11:32 PM																	
10	ome to	Minitab, 1	press F1 for help.																	
								Define Custom Resp	ionse Surface De	sign	×									
								C1 Sn C2 Readiun Sme	Cartinueu	i Fedors:	2									
								G Reactive temper	rature											
									Catagorica	(Federal										
t																				
																			100	10
100	Cl.		0	64	6	66	0					04	(15	C16	617	(1)	(19	(20	(21	
	C1	0	C3 er Reaction temperature	C4 Vield	CS .	C6	C7					C14	CIS	C16	C17	C18	C19	C50	C21	
l	C1	C2 Reaction tim	CJ e Reaction temperature 0 150		CS	C6	(1	See		Low/High	Designa		C15	C16	C17	CIB	C19	C50	C21	
1	C1	C2 Reaction tim	e Reaction temperature	Vield	CS	C6	(1						C15	C16	C17	CIB	C19	C50	C21	
1	C1	C2 Reaction tim 3	e Reaction temperature 0 150	Vield 39.3	G	C6	(1	treet.		Low/High	Designs Cancel		C15	C16	C17	C18	C19	C20	Q1	
	C1	C2 Reaction tim 3	e Reaction temperature 0 150 0 160	Vield 39.3 40.0	CS	C6	0						C15	C16	C17	CIB	C19	C20	C21	
	C1	C2 Reaction tim 3 4 4 4 3	e Reaction temperature 0 150 0 160 0 150 0 160 5 155	Vield 39.3 40.0 40.9	63	C6	a						CIS	C16	C17	C18	C19	C20	621	
	C1	C2 Reaction tim 3 4 4 4 3	e Reaction temperature 0 150 0 160 0 150 0 160	Vield 39.3 40.0 40.9 41.5	65	C6	a						C15	C16	C17	C18	C19	C20	C21	
	C1	C2 Reaction tim 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	e Reaction temperature 0 150 0 160 0 150 0 160 5 155	Vield 39.3 40.0 40.9 41.5 40.3	G	C6	(7						CIS	C16	¢17	CH	C19	(3)	C21	
	C1	C2 Reaction tim 3 4 4 4 3 3 3 3 3	e Reaction temperature 0 150 0 160 0 150 0 160 5 155 5 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5	G	C6	CT						CIS	C16	¢17	CIB	C19	(3)	C21	2
	C1	C2 Reaction tirr 3 3 4 4 3 3 3 3 3 3 3 3 3 3	e Reaction temperature 0 150 0 160 0 150 0 160 5 155 5 155 5 155	Yield 39.3 40.0 40.9 41.5 40.3 40.5 40.7	G	C6	C						CIS	C16	C17	CI	C19	C30	C21	
	C1	C2 Reaction tirr 3 3 4 4 3 3 3 3 3 3 3 3 3 3	e Reaction temperature 0 150 0 160 0 150 0 160 5 155 5 155 5 155 5 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.7	G	C6	a						CIS	C16	C17	CH	C19	C30	C21	
	C1	C2 Reaction tirr 3 3 4 4 3 3 3 3 3 3 3 3 3 3	e Reaction temperature 0 150 0 160 0 150 0 160 5 155 5 155 5 155 5 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.7	G	C6	a						CIS	C16	C11	CI	C19	C50	C21	

So, reaction time and reaction temperature have been selected as continuous factors.

(Refer Slide Time: 02:48)

After that low and high options are selected here a factor A and factor B are given their corresponding name have also be provided.

Their low value and high value are also given corresponding to each of the factors A and B as we can see from the data set we can see that for factor A; the low value and the high value are 30 and 40 respectively, you can see 30, 30, 40, 40, 35, 35, 35, 35, 35, 35, so, low value is 30, maximum is 40. Similar for B, factor B that is reaction temperature the minimum value and the maximum value are set as 150 and 160 respectively. So, once we have checked it and set it into this window and click it ok.

(Refer Slide Time: 03:57)

	- 4/3/201	8 1:11:32 PM																		
0.004	io Minitab,	press F1 for help.																		
							Define Custo	m Respon	se Surface Design Desig	ns	×	1								
							CI Sin Ci Yeld		Standard Order Colum G Order of the data C Specify by column: Run Order Column G Order of the data	_										
									C Specify by column: Paret Type Column											
							6		Unknown C Specify by column:	-	_									
							1 '		Books	1										
C1	0	CI	C4	CS	Cő	¢7	1		If its blocks C Specify by column:	_	-	C14	C15	C16	C17	C18	C19	C50	C21	
- Sn	Reaction ti	me Reaction temperature						. 1												
	1	30 15/ 30 16/					-	-				-								
	1	40 15/					149			CK.	Canoni									
	4	40 160						·				}								
	5	35 155																		
		15 151																		
	6	35 155	40.7																	
	6		40.2																	
	6 7 8	35 155																		
	6 7 8 9	35 15 35 15																		
	6 7 8 9																			

Coming to the design this design has been given so many options; first one standard order column order by the data run order column order by the data point type column, it is not required at all blocks; we are not doing any type of blocks here. So, no blocks click ok.

(Refer Slide Time: 04:17)

_	_	20 4.																					
Seis	101																				0	10	18
		4/2/2018	1:11:32 PM																				
								_															
M 10	ome to	Minitab, p	ress F1 for help.																				
)
-	achered 11			_	_		_		_												-	1/0	>
Wor	sheet 1		0	(1		(1)			(9)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	67	<i>(</i>)	(7)	(22)			
Wor	C1	Q	C) Reaction temperature	C4 Vield	C5 Ord/order	C6 Burdheler	C7 Blocks	Cl	(9	C10	CII	C12	CIJ	CH	C15	C16	C17	CIB	C19	C20	C21		
Wor		C2 Reaction time	Reaction temperature	Vield	StdOrder	C6 Run(Jeder		C8 PtType	(9	C10	CII	C12	CIJ	CM	CIS	C16	C17	CIB	C19	C20			
Wor	C1	C2 Reaction time	Reaction temperature 150	Vield 39.3	StdOrder 1	Run()rder	Blocks	PtType		C10	CII	Cl2	CIJ	C14	C15	C16	C17	CIB	C19	C20			
Wor	C1	C2 Reaction time 30	Reaction temperature 150 160	Vield 39.3 40.0	StdOrder 1 2	Run(Jeder 1 2	Blocks	PtType		C10	CII	CI2	CIJ	CIM	CIS	C16	C17	CI	C19	C50			
1	C1	C2 Reaction time 30 30 40	Reaction temperature 150 160 150	Vield 39.3 40.0 40.9	StdOrder 1 2 3	Run@rder 1 2 3	Blocks	PtType		C10	CII	C12	CIJ	CH	CIS	CH	C17	C18	CIB	C30			
1 2 3	C1	C2 Reaction time 30 30 40 40 40	Reaction temperature 150 160 150 160	Vield 39.3 40.0 40.9 41.5	StdOrder 1 2 3 4	Run(Jeder 1 2 3 4	Blocks	PtType		C10	CII	CI2	CIJ	CM	CIS	CH	C17	CI	C19	C20			
1	C1	C2 Reaction time 30 40 40 40 40 40 40 40 40 40 40 40 40 40	Reaction temperature 150 160 150 160 155	Vield 39.3 40.0 40.9 41.5 40.3	StubOrder 1 2 3 4 5	Run(Jrder 1 2 3 4 5	Blocks	PtType		C10	CII	CI2	CIJ	CIM	CIS	C16	C17	CIB	C19	C20			
1	C1	C2 Reaction time 30 40 40 40 31 31 31 31 31 31 31 31 31 31 31 31 31	Reaction temperature 150 160 150 160 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5	StdOrder 1 2 3 4 5 6	Run(Jeder 1 2 3 4 5 6	Blocks	PtType		C10	CII	CI2	CIJ	C14	CIS	C16	C17	C18	C19	C20			
Wor	C1	C2 Reaction time 36 46 46 46 46 46 46 46 46 46 46 46 46 46	Reaction temperature 150 160 150 160 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7	StdOrder 1 2 3 4 5 6 6 7	Run(Jeder 1 2 3 4 5 6 7	Blocks	PtType		CIO	CII	C12	CIJ	CIM	CIS	C16	C17	C18	C19	C20) 22
West	C1	C2 Reaction time 36 36 46 46 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Reaction temperature 150 160 150 150 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.7	StdOrder 1 2 3 4 5 6 7 7 8	Runfjirder 1 2 3 4 5 6 7 7 8	Blocks	PtType		CIO	CII	CI2	CIJ	CM	CIS	C16	C17	CIN	C19	C20			
1 2 3 4 5 6 7 8 9	C1	C2 Reaction time 36 46 46 46 46 46 46 46 46 46 46 46 46 46	Reaction temperature 150 160 150 160 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.7	StdOrder 1 2 3 4 5 6 7 7 8	Runfjirder 1 2 3 4 5 6 7 7 8	Blocks	PtType		C10	CII	CI2	CIJ	CM	CIS	C16	C17	CIB	C19	C20			
* 1 1 2 3 4 5 6 7 8	C1	C2 Reaction time 36 36 46 46 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Reaction temperature 150 160 150 150 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.7	StdOrder 1 2 3 4 5 6 7 7 8	Runfjirder 1 2 3 4 5 6 7 7 8	Blocks	PtType		C10	CII	C12	cıı	C14	CIS	C16	C17	C18	C19	C50			
1 2 3 4 5 6 7 8 9	C1	C2 Reaction time 36 36 46 46 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Reaction temperature 150 160 150 150 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.7	StdOrder 1 2 3 4 5 6 7 7 8	Runfjirder 1 2 3 4 5 6 7 7 8	Blocks	PtType		C10	CII	C12	CIJ	C14	CIS	C16	C17	CIB	C19	C50			
Webr	C1	C2 Reaction time 36 36 46 46 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Reaction temperature 150 160 150 150 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.7	StdOrder 1 2 3 4 5 6 7 7 8	Runfjirder 1 2 3 4 5 6 7 7 8	Blocks	PtType		C19	CII	CIZ	CIJ	C14	CIS	C16	C17	CIB	C19	C20			

Then also click ok. So, we are we can see that new 4 columns are also added with the initial 4 columns that is they are standard order and run order blocks and point type. Now after getting this data, you have to go back to the state stat doe response surface, then

analyse response surface design, here we have to select the yield; that means, y variable the response variable click terms.

Here, we can easily select either linear either linear plus squares or linear plus interactions or full quadratic, if you click the full quadratic as per our requirements and the situation, we can see the selected terms are AB, AA, BB and AB main factors, then A square terms BB and their interaction effects click.

(Refer Slide Time: 05:37)

Minitals - Untilled							σ x
Ne Edit Data Calc Stat Graph Editor Tools Window Help Assistant							
	TOOX + IM	5 A W 27 45 (C					
Sensor						10	
							-
4/3/2018 1:11:32 PM							
Welcome to Minitab, press F1 for help.							
	Analyze Response Surface Design	×					
Analyze Response Surface Design Options	X Represent						
							- 1
weights	0						
Carifdence level for all intervets:							
Type of confidence internal: Two	stel 💌					100	ាខាដ
CI CI Eventseen			C15 C16	C17 C18	C19	C20 C21	
Sn Reaction (* Optimal)	1	Tenns Options Stepwise					
1 1 C 3+1 (vetral lig)		Graphs Results Storage					
2 2 C A + 6.5 (spare tool) 3 3 C fr		OK Cancel					
4 4 (stat)	1						
6 6							
7 7 7 web	OK Careal 1						
9 9 35 155 40.6 9	9 1 1						
10							
n <							
elcome to Minitab, press F1 for help.							
						DIS 11	IS IN

Then click the options for weight, we are not going to do any inside any weights confidence levels 95; two sided type of confidence interval no transportation is required. So, click stepwise is also not require anything.

Then going to the graphs regular graphs under the residual plots click 4 in one's and it is very convenient to observe all the plots in a same window, it will be helpful for 4 in 1 or you can offer also the individual plots, if you want to get only histogram not others or even you can get if you want to get the 2 of 4 or three of 4, then you can easily customise your requirements by selecting your required number of plots here, we need all 4 plots in a same window.

So, click 4 in 1. So, click ok; then results a simple tables, then storage the same thing the Cook's distance leverages residuals fits coefficient design matrix which might be of interest then this can be easily inserted.

But for the time B, I am not going to show you and inserting anything. So, I leave it blank nothing. So, click it ok. So, now, click and all the 4 plots; as we have told you earlier have been generally in the same window. So, the resident versus percentage normal providing plot fitted value by the residual observation order by residual and residual versus frequency.

(Refer Slide Time: 07:26)

ite e	nd Diagno	etics for Unus	ual Observat	ions								Residual Plots	for Weld			×
			814										Re	sidual Plots for Y	ield	
	Yield	Fit Resid #											iormal Probability Plot		Versus Fits	
2.4	0.000 40	.000 0.000	* X													
		.900 0.000	: <u>x</u>										1			
the state	wual X												X	1 44		e 1
												2	1	3		
esidu	al Plots fe	v Vield												63		
												- 44 - 4	LI DJ DJ Residual	0.4	15.0 40.0 40.5 41.0 41.5 Fitted Value	1
													10 statements		Manual Datas	
													Histogram		Versus Order	
_					_				_		_		Histogram		Versus Order	
noas	teet 1 m	0										1 11	Histogram	1.	Versus Order	
Rokel	C1		CI terroperature	C4 .	CS SHOuter	C6 RunOnder	C7 Blocks	C8 Billions	0	C10	C11	-	Histogram	3 **	Versus Order	
north	C1	ion time Reaction	temperature	Vield 1		C6 RunOrder		C8 PtType	(9	C10	C11	A L L D	Histogram	3 **	Versus Order	
North St	C1	ion time Reaction	temperature 150						C9	C10	C11	A L L L		3 **		
1 month	C1	ion time Reaction	temperature	Vield 39.3				PtType 1	(9	C10	C11	A L L L		1		
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C1	ion time Reaction 30 30	temperature 150 160	Vield 39.3 40.0		RunOrder 1 2 3		PtType 1	(9	C10	C11	A L L L		1		
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C1	ion time Reaction 30 30 40	temperature 150 160 150	Vield 39.3 40.0 40.9	StdOrder 1 2 3	RunOrder 1 2 3		PtType 1	0	C10	¢11	A L L L		1		
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C1	30 30 40 40	temperature 150 160 150 160	Vield 39.3 40.0 40.9 41.5	StdOrder 1 2 3	RunOrder 1 2 3		PtType 1	0	C10	C11	A L L L		1		
•	C1	30 time Reaction 30 40 40 35	temperature 150 160 150 160 155	Vield 39.3 40.0 40.9 41.5 40.3	StdOrder 1 2 3	RunOrder 1 2 3		PtType 1	69	C10	CII	A L L L		1		
1 2 3 4 5 6 7 7	C1	30 Eme Reaction 30 30 40 40 40 35 35 35 35 35 35 35 35 35 35 35 35 35	temperature 150 160 150 160 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5	StdOrder 1 2 3	RunOrder 1 2 3		PtType 1	(9	C10	CII	A L L L		1		
* 11 11 22 33 44 55 66 77 8 8	C1	30 30 40 40 35 35 35 35	temperature 150 160 150 160 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7	StdOrder 1 2 3	RunOrder 1 2 3		PtType 1	(9	C10	CII	A L L L		1		
1 2 3	C1	30 Eme Reaction 30 30 40 40 40 35 35 35 35 35 35 35 35 35 35 35 35 35	temperature 150 160 150 160 155 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2	StdOrder 1 2 3	RunOrder 1 2 3		PtType 1	69	C10	CII	A L L L		1		

All plots are given all plots are produced here coming to this main window.

(Refer Slide Time: 07:50)

Minitab - Untitled - [Session]	- 0 X
File Edit Data Calc Stat Graph Editor Tools Window Help Assistant.	
2日後米市6500日11144400日28300日1082月244221242	
4/3/2018 1:11:32 PM	
Welcome to Minitab, press Fi for help.	
Response Surface Regression: Yield versus Reaction time, Reaction temperature	
The following terms cannot be estimated and were removed: Beaction temperature-Beaction temperature	
Analysis of Variance	
Interior DA (1) M(2) Thuise Fraim Model 4 2,1522 0,1714 (4,45) 0,403 Linear 2 2,1520 0,1714 (4,45) 0,403 Baselin insegrative 1 0,4230 0,4230 0,433 0,433 Baselin insegrative 1 0,4230 0,4230 0,433 0,433 0,433 Passelin insegrative 1 0,4230 0,4230 0,433 0,433 0,433 0,433 Passelin insegrative 1 0,4230 0,4230 0,443	
Nodel Dummary	
8 R-seg R-seg(adj) R-seg(pres) 1,207264 94.274 88.544	
Coded Coefficients	
Tens Conf #E Conf (**1) TTF Distants 64.00 0.0027 64.00 0.000 Mastion impactive 0.0175 0.104 1.01 0.000 Mastion impactive 0.0175 0.104 1.01 0.000 1.00 Mastion impactive 0.015 0.104 1.01 0.015 1.00 Mastion impactive 0.005 0.016 0.015 0.016 1.00 Mastion impactive 0.005 0.016 0.015 0.016 1.00	
Regression Equation in Uncoded Units	
	,
urrent Workshert 1	Editable

We can see the response surface regression yield versus reaction time reaction temperature analysis of variance ANOVA table are produced are model parameter model things for degrees of freedom 4 sum of square.

And this is sum square at the mean square A value, P value as already, we know all this things. So, I am not going to show you anything and interpreting in this. So, this is a linear for the reaction time reaction temperature for the square terms the; that means, A reaction temperature reaction time 2 A interaction reaction time verses and reaction temperature error, then total this is standard analysis of variance table and their corresponding sum of squares mean square mean square degrees of freedom F value and the and their corresponding P value, if any value for the P being less than 0.05 consider very significant one.

So, in that case 1, 2 3; that means, reaction time reaction temperature and the model very important and significant in this respect coming to the coefficient there is a constant term 40.46 for the reaction time the reaction temperature then reaction time and reaction time reaction time reaction temperature this all coefficients are recorded and this is a regression equation yield equal to 17.8 plus 0.408 reaction time plus 0.100 reaction temperature minus 0.0014 reaction time into reaction time minus 0.001 reaction time into reaction temperature.

This is a main our main focus is to generate to get the reaction equations from the experimental data using response surface methodology and here is a output results.

(Refer Slide Time: 10:20)

8			Regression	;	*	XQ	14 1 1	0.1															
Ses	ion		ANOVA	- 1	factorial																		
Fits	and D	Diagno	Control Charts Quality Tools	-		e Surface	• r 0	efine Custo	onse Surface im Response		niga.												
obs 1	Yiel 39.30 40.00	00 35	Reliability/Survival Multivariate		Taguchi Modify (al Design ponse Surfaci	Design.													
3		00 40	Time Series Tables	100	Cioplay Display	Design.		redict. Actorial Pio	s.,														
6 13	nusual	1 X	Nonparametrics Equivalence Tests Power and Sample Si	÷				ontour Pict urface Pict	•														
tesi	dual P	Plots for	THEM				KO	verlaid Cor	tour Plot														
_							* 8	esponse Og	stimizer.		_												
-	school 1			_	_	_	* *	esponse Og	otimizer.	_	_]	_	_		_	_						,
1000	ct	C			64 .	CS	C6	a	CI	(9	C10	CII	CU2	C13	C14	C15	C16	C17	CIB	C19	C20	CI	
1000		C	n time Reaction tem		Vield 1			a		(9	C10	C11	CU2	CIJ	C14	CIS	C16	C17	C18	C19	C20		
-	C1	C	in time Reaction tem	150	Vield 39.3	StdOrder 1	C6	a	CI	()	C10	CII	CI2	CIJ	C14	C15	C16	C17	C18	C19	C20		
•	C1	C	in time Reaction tem 30 30	150 160	Vield 39.3 40.0	StdOrder 1 2	C6	a	CI	0	C10	CII	C12	C1)	CM	CIS	C16	C17	CIN	(1)	C20		
-	C1	C	n time Reaction tem 30 30 40	150 160 150	Vield 39.3	StdOrder 1 2 3	C6	a	CI	(9	C10	C11	Cl2	CIJ	CM	CIS	C16	C17	CII	(1)	C20		
1	C1	C	an time Reaction tem 30 30 40 40	150 160 150 160	Vield 39.3 40.0	StdOrder 1 2 3 4	C6 RunOrder 1 2 3 4	a	CI	0	C10	CII	CU	cıı	CM	CIS	C16	C17	CIB	C19	C39		
1 2 3 4	C1	C	in time Reaction term 30 30 40 40 35	150 160 150	Vield 39.3 40.0 40.9	StdOrder 1 2 3 4 5	C6 RunOrder 1 2 3	a	C8 PtType 1 1 1	(9	C10	CII	CI2	C13	CH	CIS	C16	C17	CIN	(1)	C20		
1 2 3 4	C1	C	an time Reaction term 30 40 40 35 35	150 160 150 160 155 155	Yield 39.3 40.0 40.9 41.5 40.3 40.5	StdOrder 1 2 3 4 5 6	C6 RunOrder 1 2 3 4	C7 Blocks 1 1	C8 PtType 1 1 1	(9	C10	CII	CI2	CIJ	CH	CIS	C16	C17	CI	(1)	C20		
1 2 3 4	C1	C	an time Reaction term 30 40 40 35 35 35 35	150 160 150 160 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3	StdOrder 1 2 3 4 5 6 7	C6 RunOrder 1 2 3 4 5	C7 Blocks 1 1	C8 PtType 1 1 1 1 1	(9	C10	CII	C12	CIJ	C14	CIS	C16	C17	CI	(1)	C20		
1 1 2 3 4 5 6 7	C1	C	an time Reaction term 30 30 40 40 35 35 35 35 35	150 160 150 155 155 155 155	Yield 39.3 40.0 40.9 41.5 40.3 40.5	StdOrder 1 2 3 4 5 6 7 8	C6 RunOrder 1 2 3 4 5 6	C7 Blocks 1 1	C8 PtType 1 1 1 1 1	0	C10	CII	CI2	CIJ	CI4	CIS	C16	C17	CIB	C1)	C20		
1 2 3 4 5 6 7 8 9	C1	C	an time Reaction term 30 40 40 35 35 35 35	150 160 150 160 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7	StdOrder 1 2 3 4 5 6 7	C6 RunOrder 1 2 3 4 5 6 7	C7 Blocks 1 1	C8 PtType 1 1 1 1 1	(9	C10	CII	CI2	CIJ	CI4	CIS	C16	C17	CIN	C19	C20		
1 1 2 3 4 5 6 7 8 9 10	C1	C	an time Reaction term 30 30 40 40 35 35 35 35 35	150 160 150 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2	StdOrder 1 2 3 4 5 6 7 8	C6 RunOrder 1 2 3 4 5 6 7	C7 Blocks 1 1	C8 PtType 1 1 1 1 1	(9	C10	CII	CI2	CIJ	CM	CIS	C16	C17	CIN	C19	C20)
1 2 3 4 5 6 7 8 9	C1	C	an time Reaction term 30 30 40 40 35 35 35 35 35	150 160 150 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2	StdOrder 1 2 3 4 5 6 7 8	C6 RunOrder 1 2 3 4 5 6 7	C7 Blocks 1 1	C8 PtType 1 1 1 1 1	(9	C10	CII	CI2	cu	СМ	CIS	C16	C17	CIB	(1)	C30		

Now, I have made it smaller the coming to the doe response surface and contour plot. Now we are going to plot that contour surface counter plot, how to do this things. So, once we click the contour plot the options are coming as a response one we have selected is the yield x axis, I have set it reaction time y-axis reaction temperature or even you can alter this things as x axis as reaction temperature y axis as reaction time also we can do this things.

Then contours then options nothing to do with it the views of model it is ok, then click ok. So, here is a contour plot it is generated why it is a reaction time x axis, y axis is reaction temperature.

(Refer Slide Time: 11:13)

	Yiel	d Fit Reald									Contour Plot of Yield vs Reaction temperature, Reaction time
1	39.30		: *								
ŝ	40.90	0 40,900 0.000	* x								Contour Plot of Yield vs Reaction temperature, Reaction time
4	41.50	0 41.500 0.000	• x								NO Ved
ţ	Cousual	х									* 83 83 - 440
											158 #03 - 40
esi	idual Pl	lots for Yield									t 1 ⁴⁰ ;43
											g 114
ю	tour Pl	lot of Yield vs Reac	ion temperatu	re, Re	action time						
											2 114
i											
				_		_	_	_	_	_	
	C1	Q		C4 .		Cő	C7	CB	C9	C10	C1
	Sn	Reaction time Reaction			StdOrder Run	Order	Blocks	PtType			150 30 32 34 36 30 40
			150	39.3	1	1	1	1			Reaction time
	1	1 30				- 2	1	1			
	2	2 30	160	40.0							
	2	2 30 3 40	150	40.9	3	3	1	1			
	2	2 30 3 40 4 40	150 160	40.9 41.5	3	3	1	1			
	3	2 30 3 40 6 40 5 35	150 160 155	40.9 41.5 40.3	5	3 4 5	1	-			
	1 2 3 4 5 6 7	2 30 8 40 4 40 5 35 5 35	150 160 155 155	40.9 41.5 40.3 40.5		3 4 5 6 7	1	-			
	1 2 3 4 5 6 7 8	2 30 3 40 4 40 5 35 5 35 7 35	150 160 155 155 155	40.9 41.5 40.3 40.5 40.7	5 6 7	3 4 5 6 7 8	1	-			
	1 2 3 4 5 6 7 7 8 9	2 30 8 40 4 40 5 35 5 35	150 160 155 155 155 155	40.9 41.5 40.3 40.5 40.7 40.2	5	3 4 5 6 7 8 9	1	-			
	1 2 3 4 5 6 7 8 9	2 30 3 40 4 40 5 35 5 35 7 35 8 35	150 160 155 155 155	40.9 41.5 40.3 40.5 40.7	5 6 7 8	3 4 5 6 7 8 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 4 5 6 7 8 9	2 30 3 40 4 40 5 35 5 35 7 35 8 35	150 160 155 155 155 155	40.9 41.5 40.3 40.5 40.7 40.2	5 6 7 8	3 4 5 6 7 8 9	1	-			

And this is a contour plot this contour plot of yield versus reaction time reaction temperature versus and reaction time, you can see this thing and subsequently, it will be able to interpret these things, similarly, if you want to generate the response plot.

(Refer Slide Time: 11:51)

							• 68									6	
2 3	40.000 40.900	Fit Reald 39,300 0.000 40.000 0.000 40.900 0.000 41.500 0.000	Resid • X • X • X • X														
x Un	usual X						3D Surface Plot Options			×							
		for Yield of Yield vs Reac	tion tempera	ture, Re	action time	00050505	Method Mergulation Method Deterois method Deterois generic IF Spinderbox in and	- 100									
_	siver 1 ***						Heah for Interpolating Surf	0			_					67	
	C1	0	CI	C4 .	C5 C6		# Agtomatic C Quittern				C15	C16	C17	C18	(1) (20 C21	
	Sn Re	action time Reaction	n temperature	Vield	StdOrder RunOr	ier 💷	2 Medi Number:										
1	1	30	150	39.3	1	1	2 Mesh Sumber:										
	2	30	160	40.0	2	2											
	3	40	150	40.9	3	3	1		1								
	4	40	160	41.5	4	4	149	QK	Cano								
	5	35	155	40.3	5	5	1 1										
	6	35	155	40.5	6	6	1 1										
	7	35	155	40.7	7	7	1 1										
	8	35	155	40.2	8	8	1 1							_		_	_
	9	35	155	40.6	9	9	1 1										
																100	
8 9 10																	

Then you have to click the 3-D surface plot here the wire frame is selected click ok.

Similarly, you have to put the z variables as I have selected z variable as yield as z variable reaction time is a y variable and reaction temperature as x variable the surface option, it is a distance method we are selecting one may afford the acumens polynomial

method their result will be varied accordingly according to your choice distance power is two is then scale nothing to do with it.

(Refer Slide Time: 12:46)

Sess																						1018
1 2 3 4	40.900	39.300 0.000 40.000 0.000 40.900 0.000 41.500 0.000	Besid • X • X • X																			
x 0	ILFURI J						30 5	30 Surface Pic					х	x								
Resid	dual Plo	ts for Yield						Tilles Fostsula	•													
							000000000000000000000000000000000000000	100	_	_	_	_	_									
Cont	our Plot	of Yield vs React	tion temperat	ture, Re	action	time	0.0	\$-010 1														
							0															
(Sylttle 2:	Q				-)
TROP	obert 1 mil							Eastrate 1:													0	
•	C1	0	0	C4 ,	CS	Cő									C15	C16	C17	C18	C19	C50	C21	C22
	Sn F	leaction time Reactio			StdOrder	RunOrder	-	Footgate 2:					-									
1	1	30	150	39.3 40.0	-	2 2																
2		40	150	40.0	-									11								
4	- 1	40	160	41.5	- 1		-	140	1		ox	0	most									
5	5	35	155	40.3	-			1 1	_	-	-	-										
6	6	35	155	40.5	-			1 1														
7	7	35	155	40.7	1	7 7		1 1														
8	8	35	155	40.2	1	8 8		1 1														
9	9	35	155	40.6	1	9 9		1 1														
10																				-		
11																						

Then click the labels again if you want to add something with it as a title subtitle two footnote you may add for your convenience is it a data label data display symbols surface symbols project lines, then data options all rows, I have clicked it click and then click.

(Refer Slide Time: 13:18)

3	40.900	40.900 0	X 1 000													
	urual		30 Graph Tools					×	-61	Surface Plot of Yield vs Reaction time, Reaction t	lemperature	- 10 X				
Cit.	UPUB1	*	44 44	99	N N	K K K	M Q 6									
-	ual Ple	ots for Yield								Surface Plot of Yield vs Read	tion time, Reaction temp	erature				
-	ur Ple	of Vield v	Reaction tempera	ture Re	action ti	ime										
	MI PR	A OF THEMA 4	reaction tempera	nure, ne	account o											
			Reaction time, Rea	allen A						1	100					
na	Ce P10	t of field vs	Reaction time, Ke	action to	emperati	ure					THEFT					
										8						
										111111						
	hard 1.0			_						N				1	a R	1
_	fil fil		0	64	6	66	a	0	0	111111	.					
-	C1	Q	C) Reaction temperature	C4 a	CS StdOrder	C6 RunOrder	C7 Blocks	C8 PtType	0	111111	· ·	-tee	9 C	20 C21		
-	C1	Q							0	111111		-taa	9 C			
-	C1	C2 Reaction time	Reaction temperature	Yield	StdOrder 1	RunOrder 1			C9	111111		-tax	9 C			
-	C1	C2 Reaction time 30	Reaction temperature 150	Vield 39.3	StdOrder 1 2	RunOrder 1 2			C9	***	- Ander	-Gas	9 C			
-	C1	C2 Reaction time 30 30	Reaction temperature 150 160	Vield 39.3 40.0	StdOrder 1 2 3	RunOrder 1 2 3			C9	***	take the second	(far	9 C			
-	C1	C2 Reaction time 30 30 40	Reaction temperature 150 160 150	Vield 39.3 40.0 40.9	StdOrder 1 2 3 4	RunOrder 1 2 3 4			C9	***		-tas	9 C			
_	C1	C2 Reaction time 30 30 40 40	Reaction temperature 150 160 150 160	Vield 39.3 40.0 40.9 41.5	StdOrder 1 2 3 4 5	RunOrder 1 2 3 4 5			C9	***		ter	9 C			
-	C1	C2 Reaction time 30 30 40 40 35	Reaction temperature 150 160 150 160 155 155	Vield 39.3 40.0 40.9 41.5 40.3	StdOrder 1 2 3 4 5 6	RunOrder 1 2 3 4 5 6			()	***	- Andrew	-tee	9 C			
-	C1	C2 Reaction time 30 30 40 40 35 35	Reaction temperature 150 160 150 160 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5	StdOrder 1 2 3 4 5 6 7	RunOrder 1 2 3 4 5 6 7			0	***	a solution	164	9 C			
-	C1	2 Reaction time 30 30 40 40 35 35 35 35	Reaction temperature 150 160 150 160 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7	StdOrder 1 2 3 4 5 6 7 7 8	RunOrder 1 2 3 4 5 6 7			0	***	- And		9 C			
_	C1	C2 Reaction time 30 30 40 40 35 35 35 35 35	Reaction temperature 150 160 150 160 155 155 155 155 155	Vield 39.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2	StdOrder 1 2 3 4 5 6 7 7 8	RunOrder 1 2 3 4 5 6 7			()	***	n name		9 C			

Here we can see this is a 3-D graph tool, this is a surface plot are generated their reaction time is here reaction temperature x and y and yz is vertical axis is representing the yield here is a surface plot; Now, coming back to the point of the PPT.

(Refer Slide Time: 13:52)

Minitals - United																			-	0 1
Selex.	Repression ANOVA	Factor	-		0820	+ La ta	x 1.0 × -12	A DE LA	(45) (u.	_	_	_	_	_	_	_	_	_	10110
3/30 Televine to Minita	Reliability (Supplied				ante Response So net Optimul (ner alyze Response) allet tantal Pictu riena Pict riena Contaur P	pi	Europh	Befine Carl Cratic a response of the												
					genes Optimize															
Worksheet 1 ***		-	-			-			-	-	-	-	_	-	-	_	_	-	1.0	1 40 1
a 628	C26 C27	628	629	C30 6	31 632	C33	634	633	C36	637	638	639	6.65	C41	6.42	(4)	C44	643	C.66	(4)
	Office Rear three segmentation 20 10 20 164 40 154 40	Vield 29.3 40.0 40.9 41.5 40.5 40.5 40.5 40.7 40.7										b		C.						

Similar to this process the presentation has been made for your convenience to follow.

(Refer Slide Time: 13:55)

And to practice in MINITAB the step 1, step 2, step 3.

(Refer Slide Time: 14:03)

Fin fr	n tuu 10 X	Call Stat 6	ngh Editor Touto Min * (*) \$ 8 48 45 > ar + (* 3 1	den Halp	Autom	80	0 0 ()	14 8089 A	E-SAR M	coded										0 >
		3/30/2018	11.56.49 AM									Lon and	Custom Resp Inter A				* *		10	1.00.1.00
								Define Custom Response	Continuous Pactors	uction temperature	N V N	Yorkele T Code T Unit	inded			×	Carrol			
•	C1 55		C) Reaction temperature 110	C4 Vield	63	68	er		-	united a		619	(16	617	618	619	C249	en	en	(1)
1	2	10	140	40.0				100		0x	Carvat									
2	- 4	40	160	41.5								-								
2	- 1	95	155	40.3																
7	7	13	155	40.7																
+		33	155	40.2																
10																				
11																				
1.00				-																
	ar i u	press F1 for hal	¥.																	

Adding the high and low values for the factors which coded and uncoded point options.

(Refer Slide Time: 14:11)

	Reaction	Reaction		-											
Sn	time	temperature	Yield	/k	2-4 A B	2410									
1	30	150	39.3					Defee	Custom Res	ponce Surfa	ie Design L	na/High	ж	-	100
2	30	160	40.0						d Hapt Values	Rama	1.0		math		
3	40	150	40.9							faaction temp		100	40		
4	40	160	41.5		Continues Provide										
5	35	155	40.3	Pass she		Water Intern	penhare'		wiel Carla Are						
6	35	155	40.5	1	Calegorical P	chara		50	oded			OK	Cancel		
7	35	155	40.7								_				1.07
8	35	155	40.2	1		100.000	. tesps	C19	(36	(17	C18	C19	C34	cn.	en
9	35	155	40.6			04	Caval								
1		55 40.3 155 40.5													
*	35	155 40.7 155 40.2													
		15 40.5													

Step 3 again this is A where the data set is given from which we can easily set as low and high value.

(Refer Slide Time: 14:19)

Lat bet Cel Set Set Set	ah faltar hada Was	00000		160=05 A 2-4.	A R L & K &	Define Cuttorn Response Su	rface Design Designs	- 0
	C) C) Real-Dira Mean-Dira 100 100 100 100 100 100 100 10	C4 C3 Visit 39.3 40.5 40.5 40.5 40.5 40.5 40.5 40.5	G8 (7	C.2 Francisco term C.3 Francisco termperatura C.4 Valid	non nan Para Inter Vision nanya dari and Paran 		************************************	

Then customise the design step 4, then 5.

(Refer Slide Time: 14:23)

Step	p – 5:	New	Attri	but	es ai	re A	dde	d w	ith	the	Fin	al I	Data	iset									
Minitale - I	Untilled																						0
- E-1 -0	Bata Cale Se P 26 (3) (5)	10 Graph Edit	* Teals Wind * 8 86 75	Con 1 Help	Assistant I		108		10 A	27.42	wis.	rat e											
	_				-				-													C AN	1911
		press Fi for I							7	New	attri	butes	are a	dded									
							_	_	5		_		_	_	_	_	_	_	_		_	_	
Worksha																						-5.2	
	G CI	time Reaction	C3 temperature	C4 Vield	C3 HdOrder Ro		C7 focks	C8 PIType	C 9	C10	611	cu	61	C14	cm	C16	617	C18	C19	639	CP1	CH CH	
-	G CI	time Reaction	temperature 150	Vield 39.3					C9	C19	C11	CU	613	CH	cn	C16	617	C18	C19	C29	C14	CII	
_	G CI	10 10 10 10 10 10 10 10 10 10 10 10 10 1	temperature 150 160 130	Vield 39.3 40.0 40.9					C9	C19	C11	cu	C13	C14	C11	C16	607	C18	C19	C29	C14	en	
_	G CI	time Reaction 30 40 40	temperature 150 160 150 150	Vield 39.3 40.0 40.9 41.5					C9	619	CII	cu	¢11	CH	cn	6.16	617	C18	C19	C/0	CP1	cn	
_	G CI	10 10 10 10 10 10 10 10 10 10 10 10 10 1	temperature 150 160 130	Vield 39.3 40.0 40.9					C9	C10	611	CU	C13	CM	cn	C16	C0	C18	C19	C20	CP1	en	
_	G CI	time Reaction 30 40 40 35 35 35	temperature 150 160 150 160 155 155 155	Yuld 29.3 40.0 41.5 40.3 40.5 40.7					C9	C10	C11	CU	CU	СМ	cn	C16	C07	си	C19	6249	CI1	an	
-	G CI	time Reaction 30	terreperature 150 160 110 160 155 155 155 155	Yuld 29.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2					0	610	C11	CU	69	СМ	CB	C18	ca	CH	C19	620	C.N	cn	
	G CI	time Reaction 30 40 40 35 35 35	temperature 150 160 150 160 155 155 155	Yuld 39.3 40.0 41.5 40.3 40.5 40.7					0	C19	CH	CU	61	CM	CB	CH	CI7	C18	619	620	CH	cn	
-	G CI	time Reaction 30	terreperature 150 160 110 160 155 155 155 155	Yuld 29.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2					0	C19	C11	CU	CU	CH	CB	C16	63	C18	C19	628	CH	CH CH	
	G CI	time Reaction 30	terreperature 150 160 110 160 155 155 155 155	Yuld 29.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2					0	C19	C11	CU	CU	CH	CB	CH	C3	C18	C19	629	CB	cu	
	G CI	time Reaction 30	terreperature 150 160 110 160 155 155 155 155	Yuld 29.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2					0	C19	CII	CU	01	CH	CB	CH	CI	CIB	C19	629	CI	cu	
	1 G 1 Pear time 2 Pear time 3 Pear time 4 Pear time 5 Pear time 6 Pear time 7 Pear time 8 Pear time 9 Pear tim 9 <t< td=""><td>1 Time Reaction 30 40 40 40 15 15 15 15 15 15 15 15 15 15</td><td>temperature 150 160 160 155 155 155 155</td><td>Vield 39.3 40.0 40.0 41.3 40.5 40.7 40.2 40.6</td><td></td><td></td><td></td><td></td><td>0</td><td>C10</td><td>CH</td><td>CU.</td><td>61</td><td>СМ</td><td>CB</td><td>C18</td><td>C17</td><td>C18</td><td>C19</td><td>638</td><td>Ch</td><td>CII</td><td></td></t<>	1 Time Reaction 30 40 40 40 15 15 15 15 15 15 15 15 15 15	temperature 150 160 160 155 155 155 155	Vield 39.3 40.0 40.0 41.3 40.5 40.7 40.2 40.6					0	C10	CH	CU.	61	СМ	CB	C18	C17	C18	C19	638	Ch	CII	
	1 G 1 Pear time 2 Pear time 3 Pear time 4 Pear time 5 Pear time 6 Pear time 7 Pear time 8 Pear time 9 Pear tim 9 <t< td=""><td>time Reaction 30 </td><td>temperature 150 160 160 155 155 155 155</td><td>Yuld 29.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2</td><td></td><td></td><td></td><td></td><td>0</td><td>C10</td><td>CH</td><td>CU</td><td>63</td><td>СМ</td><td>CB</td><td>C18</td><td>69</td><td>C18</td><td>C19</td><td>638</td><td>cn</td><td>cn</td><td></td></t<>	time Reaction 30	temperature 150 160 160 155 155 155 155	Yuld 29.3 40.0 40.9 41.5 40.3 40.5 40.7 40.2					0	C10	CH	CU	63	СМ	CB	C18	69	C18	C19	638	cn	cn	
	1 G 1 Pear time 2 Pear time 3 Pear time 4 Pear time 5 Pear time 6 Pear time 7 Pear time 8 Pear time 9 Pear tim 9 <t< td=""><td>1 Time Reaction 30 40 40 40 15 15 15 15 15 15 15 15 15 15</td><td>temperature 150 160 160 155 155 155 155</td><td>Vield 39.3 40.0 40.0 41.3 40.5 40.7 40.2 40.6</td><td></td><td></td><td>Backs 1</td><td>PIType 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td></td><td>CII</td><td>¢Ψ</td><td>63</td><td>СМ</td><td>68</td><td>CB</td><td>CIT</td><td>C18</td><td>C19</td><td>630</td><td>cn</td><td>c))</td><td></td></t<>	1 Time Reaction 30 40 40 40 15 15 15 15 15 15 15 15 15 15	temperature 150 160 160 155 155 155 155	Vield 39.3 40.0 40.0 41.3 40.5 40.7 40.2 40.6			Backs 1	PIType 1 1 1 1 1 1 1 1 1 1 1 1 1 1			CII	¢Ψ	63	СМ	68	CB	CIT	C18	C19	630	cn	c))	
	1 G 1 Pear time 2 Pear time 3 Pear time 4 Pear time 5 Pear time 6 Pear time 7 Pear time 8 Pear time 9 Pear tim 9 <t< td=""><td>1 Time Reaction 30 40 40 40 15 15 15 15 15 15 15 15 15 15</td><td>temperature 150 160 160 155 155 155 155</td><td>Vield 39.3 40.0 40.0 41.3 40.5 40.7 40.2 40.6</td><td></td><td></td><td>Backs 1</td><td>PIType 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td></td><td>CH</td><td>¢Ψ</td><td>03</td><td>Сн</td><td>61</td><td>CH</td><td>CIT</td><td>C38</td><td>C19</td><td>639</td><td>cn</td><td>C11</td><td></td></t<>	1 Time Reaction 30 40 40 40 15 15 15 15 15 15 15 15 15 15	temperature 150 160 160 155 155 155 155	Vield 39.3 40.0 40.0 41.3 40.5 40.7 40.2 40.6			Backs 1	PIType 1 1 1 1 1 1 1 1 1 1 1 1 1 1			CH	¢Ψ	03	Сн	61	CH	CIT	C38	C19	639	cn	C11	
	1 C cs Regard line 2 3 3 4 5 6 7 8 9 9 10 10 11 10 12 10 13 10 14 10 15 10	1 time faction 10 10 10 10 10 10 10 10 10 10	temperature 130 140 140 140 140 140 140 140 140 155 155	Vield 39.3 40.0 40.0 41.3 40.5 40.7 40.2 40.6			Backs 1	PIType 1 1 1 1 1 1 1 1 1 1 1 1 1 1			CH	CU.	¢0	Сн	61	CH	CIT	C 9	C19	630	cn		a
	1 C cs Regard line 2 3 3 4 5 6 7 8 9 9 10 10 11 10 12 10 13 10 14 10 15 10	1 Time Reaction 30 40 40 40 15 15 15 15 15 15 15 15 15 15	temperature 130 140 140 140 140 140 140 140 140 155 155	79488 295.3 40.9 41.5 40.5 40.7 40.2 40.6			Backs 1	PIType 1 1 1 1 1 1 1 1 1 1 1 1 1 1			611	01	CU	694	69	CH	CT	C 9	C19	CH	CH	CIJ	

Step 5 is new attributes are added with the final dataset the step 6 is analyser response surface design.

(Refer Slide Time: 14:28)

Store (D		6		D					_									
Step – 6	: Analyze	Kesj	onse	e Sur	face	Des	Ign													
Manhab - Unstitled																				0
Fdu Edit Data Calc 1		Indox Hel																		
286301	Basis Statistics Regression	.00			THO	- Lab	∕α]= - α	< A (V)	1/ 25 4											
0	ANOVA	•			-	-	-												1.40	1001
	Control Charls Quality Tools		eres Suffere			Surface Desig														
3/30, Velcome to Minitab	Relability/Survival	• Tap			tria Cystore # ect Optimul D	exponse Surfa exign	ca Design													
	Multivariate Time Series		Hy Design		dyce Response	e Surface Deo	9 ⁴ -													
	Talther Nonganamatrics	· · · ·	ay Design	UV Pre	dut karigi Platta				langeonna fin											
	Equivalence Texts			EL Co	days Plat															
	Pewer and Sample Size			bc Ov	face Plot plaid Contour															
				the Res	porsa Optici	191-														
0		_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worksheet 1 *** C1 C	2 0	64	0	C6 0	0	69	C10	611	69	613	614	615	C16	617	C18	C19	629	ch.	CH CH	623
Sn Reaction	on time Reaction temperatu		StdOrder #	turrifeder Bit	icks P(T)	-														
2 2	10 1	0 40.0	2	- 1	- 1	1														
1 1	40 1			- 1	-	1														
5 5	35 1	5 40.3				8														
1 1	85 H					1														
	35 1	5 40.2			-	1														
9 9 10	35 1	5 40.6		*		8														
-																				
12																				
The Part of the	1	-				_	_	_	_	_	_	-	_	_	_					
urrent Worksheatt Workshe	net 1																			
																		6	2	
15				NPTE	ONU	NF													16	
Ø.	KHARAGPUR			NPTEL	ONLI	NE												-16		
()"	KHARAGPUR			NPTEL	. ONLI FICATI	NE ON CC	URSE										6		h	λ

(Refer Slide Time: 14:34)

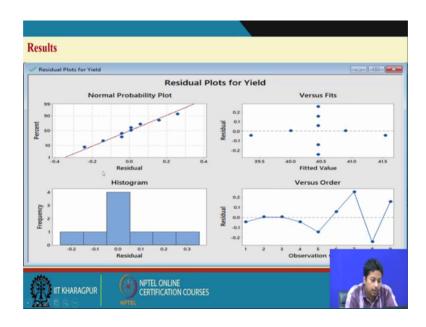
Step – 7	: Select	the R	espo	nse														
File Sat Date Call	500 F	1	Help Assistant D II _ C 1		000L		A 2= -≤ A [0]	N 12 - 31	e.								(10	0 ×
		ngerature 100 100 100 100 100 100 100 100 100 10		68 RunCvder 1 3 4 5 6 7 7 9 6 8 9	51 th		Tenge Reserves Gold	<u>- 100</u> 030-	Optore Resolts OX	X Sector Grant	C18	cu	CU	C19	628	CR1	(a)	, v 100 T 07 201 A
				CER	el onl Tificat	INE 10N C	OURSES								ß			

Step 7 is select the response y yield is considered as a response here.

(Refer Slide Time: 14:42)

Step – 8: Customization o	f Designs	
Alapp Regress Labor Sings Years 20 block for Monosynem 20	support [Contracts built of dimension [10] Contracts built of dimension [10] Enc of contractments A contract of the dimension A contreset of the dimension A contreset of the dimension	Image: Transmission Schedungs Capital X
Mo or ore Mo or ore Anayo Regrow Safes Deep Frank X Deep Frank Vector X P Index P Index P P Index P Index P P Index P Index P P Index P P Index P P Index P P P P Index P P P	Tengtan Respons Surface Design Storage X Frag Coefficients Frag Coefficients Fragmannn Fragmann Fragmannn Fragmann Fragmannn Fragmann Fragmann Fragmannn Fr	
	NPTEL ONLINE CERTIFICATION COURSES	

Then customisation of design, it is a completely a user specific here we have shown you that the following terms is linear one may afford the linear plus squared terms or quadratic terms, I have selected here the quadratic terms.


That is why result will be deferred from this the results that of the, of this particular PPT, then this option should come up and all the snapshots are given for your convenience.

Step - 9: Results' Window	- a x
Control Control <t< th=""><th>Periodicalita la fuel Residual Plots for Vield Terminal Probability Plots Molagram</th></t<>	Periodicalita la fuel Residual Plots for Vield Terminal Probability Plots Molagram
IT KHARAGPUR	es

(Refer Slide Time: 15:17)

Then results into this results in the coming is a 4 residual 4 plots are given are produced here is a data set.

(Refer Slide Time: 15:29)

This is a 4 plots as we have discussed.

(Refer Slide Time: 15:35)

Results	
Response Surface Regression: Yield versus Reaction time, Reaction temperature	1
Analysis of Variance	
Source DF Adj 55 Adj 95 F-Value P-Value Model 2 2.02500 1.41250 47.02 0.000 Linear 2 2.02500 1.41250 47.02 0.000	
Reaction time 1 2.40250 2.40250 41.34 0.000 Reaction temperature 1 0.42250 0.40250 14.30 0.005	ANOVA table
Error 6 0.17722 0.02954 Lack=of-Fit 2 0.00522 0.00261 0.06 0.942	
Pure Error 4 0.17200 0.04300 Total 8 3.00222	
Nodel Summary	
5 R-sq R-sq(adj) R-sq(pred) 0.172643 94.104 92.128 92.618	Model Summary
0.172043 94.208 92.238 91.028	
Coded Coefficients	Description ACC Lock
Tem Coef 3E Coef 1-Value F-Value VIF Constant 40.4444 0.0573 705.99 0.000 Reaction time 0.7750 0.0055 9.02 0.000 1.00	Regression coefficients
Reaction temperature 0.3250 0.0059 3.78 0.009 1.00	
Regression Equation in Uncoded Units	Regression Equation
Tield = 24.94 + 0.1550 Reaction time + 0.0650 Reaction temperature	
-	
IIT KHARAGPUR	RSES

And here is the ANOVA table model, summery, regression coefficient regression equations, we can see here the regression equation, we have generated and is a ANOVA table from this we can easily interpret which factor is very important; that means, significant which is which is not we can easily interpret, we can also observed the coefficient of constant term the reaction time the reaction temperature. (Refer Slide Time: 16:08)

Stej	p – 1	10: G	enerat	ion	of (Conte	our P	lot														
Normali - 1 File Edit	Data Calo	Stat Graph Basic Stat Regressio ANOVA		000	1 274		8 0 M P	10 10 15 X + 14	/+ + + ti	5 A 72	र न ।	el.									•	0 ×
Term Constant Reaction Reaction Reaction Regression Field = 1	officiant tam tamperat 24.54 = 0 al Piota fo	Control C Constant C Constant P Constant P Relativity Multivity Tables Nongarant Equivalent Poostram	nala (Tarohal de m matrice	Facto Reserved Topor Vig-Model Prantices	re chi Ay Design ay Design	± K∎∎⊻ 4, • • •	Creats Response Dafina Custore I Select Optimal I Analyze Respon Predict Factorial Proto Contract Proto Daface Prot Overland Contex Response Optim	teoponos Su vecipi a Sunface Du	face Design												be	al an l a
-				_							_		_	_			_			_	1.00	,
8 C 5 3 4 5 6 7 8 9 9 10 11 10 6		C2 Sion time Real 30 40 40 40 33 33 33 35 35 35	C3 Xion terreportature 150 150 150 155 155 155 155 155 155	29.3 40.0 40.9 41.5 40.3 40.3 40.5 40.7 40.2	63 51400rdar 1 2 8 4 3 6 7 7 6 8 9	68 RustiOrdus 1 2 3 4 5 6 7 6 9	C7 C Blocks PH7		CNB	¢H.	cu	CU.	Cld	618	C16	cu	CIA	CH.	638	CH.	(2)	ca /
•		theat 1			•) NPT CER	el onli Tificati	NE ON CO	DURSE	s									-6			2

(Refer Slide Time: 16:16)

Results: Contour	olot
	Contour Plot of Yield vs Reaction temperature, Reaction time
	Contour Plot of Yield vs Reaction temperature, Reaction time
	Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho
IT KHARAGPUR	NPTEL ONLINE CERTIFICATION COURSES

So, generation of the contour plot, we have already discussed and also demonstrated, you here is the output of the contour plot.

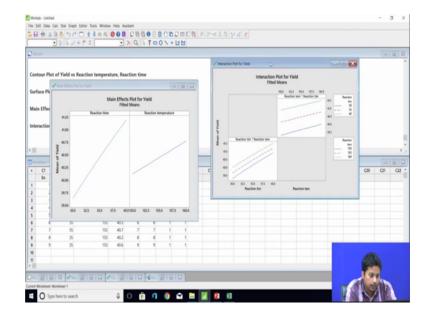
(Refer Slide Time: 16:20)

Step – 12: Select 3D Su	rface Plot for Response Surface generation
Madab - United	- 0
File Edit Data Cali Stat Graph Editor Tools Window Help	
Carl Carl Carl Carl Carl Carl Carl Carl	X C TOON - UD
Tennon D. Marginal Pist.	(c) (0)
Hotopen. Impression Equation in Deput. Instit = 24.94 + 0.1880 Postability Part. Ensitive Office Parts Residual Plans for Vie Postability Part. Deputing Continuous Part.	ANDERSON
Contour Plot of Yield Surface Plot of Yield Surface Plot of Yield Line Plot.	stan time paratere
j al BarChat.	
C Trees Series Plat.	
Honorada 1 mm Area Draph C1 C2 Cantour Plat	C5 C6 C7 C8 C9 C76 C11 C92 C33 C14 C15 C96 C97 C38 C19 C26 C21 C22 C23
In Reaction to (1) 10 Scatterplot	MOrder RanOrder Blacks PiType
2 2 10 100 100 100 100 100 100 100 100 1	and Part
4 4 40 140 and two	Me indicatologi keluaren e magantea sanlakte (f) pandister antalatea (il anti il bij versening a exemister antalatea (il pandiste ingening)
5 5 35 155 wear	
7 7 35 155 40.7 8 8 35 155 40.2	
9 9 35 155 40.6	
10	
u .	
(The December 1997)	
Current Worksheet Worksheet 1	
	•
IIT KHARAGPUR	NPTEL ONLINE CERTIFICATION COURSES

(Refer Slide Time: 17:23)

tep – 13: Select Proper Options for Respon	se Surface generation
3D Surface Plots X Surface Wrefname International Control of Contr	10 Softer Pot Workson X Cl. Br. Cl. Br. Deta Clown. Deta Clown.

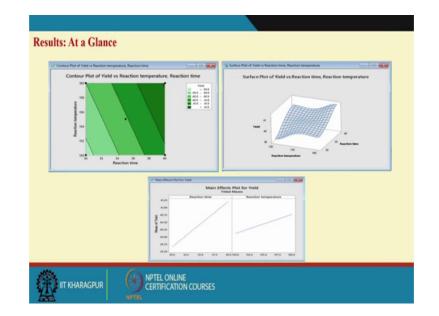
Now, here is a generation.


(Refer Slide Time: 16:32)

to Edit Data Cali	Inat Graph Editor Tools V Basic Stationics Regression AMDVA			8 0 M	2000	/4]7 = 2		4 e										0
Innen Initi = 11.31 + 0. Lesidual Plots fo Centour Plot of Y iurface Plot of Y iurface Plot of Y	Ded Control Charls Control Charls Duality Facts Multi-united Multi-united Tune forms Yahle Nongasemetros Equivalence Tests Penner and Tampia Sco Penner and Tampia Sco Penner and Tampia Sco	Packets Reserved Maker Tepsch V., Macky Display form, React etilors term	Design Design Alian time genature	Dafina Custos Select Optimu	nos Surface Desi	or Design	Pactorial Not the In Tactors of Original		eta menerio tro es	entried force Mi								1.500
Bucksheet 1													_				1.00	(10)
C1 C C1 C	C1 C3 in time function temperature in in in in	0 19.3 0 40.0 0 40.9 0 41.5 5 40.3 5 40.5 5 40.7 5 40.2	C3 C4 http://des 1 2 3 4 5 6 7 8 6 7 8 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1		CB C9 IType I I I I I I I I I I I I I I I I I I I	69	СН	cu c	U C14	618	CHB	ω	618	619	628	CR.	cu	<i>ci</i>

So, last point is the select the factorial plot. So, to do the factorial plot coming back to the MINITAB coming to the stat doe response surface, then factorial plot this option is there click it and you have to set response as yield.

And then this is a selected this variables then options if you want to add something you can add this are the graph plots ok, then view models again this a response is yield. So, click it ok.


(Refer Slide Time: 17:23)

So, you can see is a interaction plots are given the main interaction plots are given. So, this is a mean of yield, this a reaction time this is a reaction temperature and again this is a mean of yield. So, here the yield is from low to high reaction time is low to high 30 to 40 and mean of yield is 39.5 to 41.25. So, as the reaction time increases the mean of yield also increasing.

Similarly, we can see you 150 to 160 this scale is given for the reaction temperature and the mean of yield remain same, we can also experience the same kind of behaviour of the graph that is as it is increasing the mean of yield is also increasing, but it is it is too steep in nature where as it is comparatively flat than this one coming to the interaction plot here we can see the reaction time in the reaction term and then reaction temperature here the reaction temperature and reaction time is given and the mean of yield in a same plot it is given; so, through this graph.

And the tables and that is ANOVA tables, you can easily interpret which variables are important what is the degree equations ultimately you are getting you can see which regression equation will be how you can get the factor plots, how you can generate the surface plot in the response surface methodology and how you can get the contour plots throughout this experiments; through the following this procedural which are nicely illustrated from the beginning of the slide one may easily carry out the experiments using MINITAB environment.

(Refer Slide Time: 19:52)

So, using these things ultimately, you will get this type of graph and this has been given in a same window to visualize; how you can interpret through MINITAB software.

This is a contour plot; this is a surface plot and is a factor affects main factor affects by choosing differently I have also shown to you the interaction effects with mean of yield when here, I have not selected this things this is completely depends on users requirement as you require it you can also generate many more graphs using this MINITAB software, it will be really helpful for this analysis purpose and for Aadhar statistical analysis purpose is really very useful.

So, this is a final results using this MINITAB for response surface methodology, if you have any further queries or questions how to use the MINITAB for experimenting in design analysis by experiments or other purpose, if you have any queries any doubts, you can ask me and we can discuss with us we will try our level best to help you out and give you, we will try to provide you the required solution; So, that you can get the best out of this particular software MINITAB to fulfil your purpose ultimately.

Thank you.