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Lecture - 55
Response Surface Methodology ( RSM ) — Fitting Second Order Model

Hello welcome to the class on Response Surface Methodology. Today we will discuss
second order model primarily how to feed second order model; the experimental designs
required for data collection through experimentation and then how do you estimate the
parameters and check the model adequacy, followed by the second lecture will be on

analyzing the second order response surface model.
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So, content of this class we will introduce the second order model then I will show you
the second order response surface designs which we have elaborately discussed in the
last class. And then I will show you the how to fit the second order response surface

whilst we will end this lecture with an example which we will continue in next class also.
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So, if you recall the last, but one where I have discussed on the sequential experiments.

(Refer Slide Time: 01:40)
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That means, so we have the operating zone and we have started with the experimenting
somewhere here and the first order experimentation and this will give you that you
follow this direction and maybe your that optimum zone lies somewhere here. So, when
using the first order model here; first order model here you get the direction of
improvement and then use you start doing experiment one after another at different

points.



And accordingly if you plot the yield value for example, the y and the your different
experiments runs. So, last class we have shown you that the what way the yield value is
changing and in this manner we come to some point like this. And then here we say that
this is this as curvature; so, in at this point for perhaps this is the zone where the

optimizer optimum point lies.

So, this zone is a non-linear zone which is here it is probably quadratic 1. So, at this at
this particular operating zone like this one equivalent to this; so, here your first order
model will not fit you require a second order model. And second order model then the if
I consider the same example that where we have two x independent variable or factors x

1 and x 2 then the second order a first order model we have explained like ok.

Now, let us do the general one suppose that we have k number of factors k factors. So, X
1, X 2, X 3 like X k then your second order model looks like this beta 0 plus sum of |
equal to 1 to k beta i x 1 plus sum of i equal to 1 to k; beta 1 1 x i square. So, this is our
main effect; this is the intercept and this is the quadratic effect plus there will be
interaction term i less than j. So, beta i j x x 1 x j plus error term will be there plus error.

So, this is your interaction term.

So, by second order model we mean this where there will be intercept, there will be that
benefit or the first order effect there will be second order effect there will be interaction
effect. Today class is for how to estimate this all beta and then in order to estimate the all
the beta parameter parameters what should be the experimental design so, that those
many number of parameters can be estimated. So, the because if we should require a
experiment where the number of experimental runs should be sufficient enough to

estimate all the parameters.

At the same time will not will be we should be cost effective means we will not go for a

large number of experiment which is practically impossible.
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So, here then how many what is the what is the number of parameters to be estimated
one is beta 0; this is intercept. So, it is number 1 now you will be beta i. So, 1 equal to 1
to k. So, that mean there are k number of your first order coefficients first order effect

basically or other way we can say main effect first order main effect.

Then beta 1 i that will be k in number and then you see that you have the interactions
interaction will be 2 interactions, 3 way interactions and in this manner there will be k a
interaction. So, last one will be 1; so, you will be a large number of effect parameters.
So, if I say that beta 0 is intercept beta a beta these are all main effects this is main
effects. So, then there will be so, many interaction also there will be so, many interaction

effects.

So, let us see that the difference in first order and second order model with reference to
different factors. If you go for first order model which is beta 0 plus beta x 1 then when k
equal to 2 number of factor coefficients is 3 or number of parameter to be estimated is 3
and in that time what will happen in the second order model. So, there will be one
intercept main first order effect, quadratic effect plus interaction effect. So, you require
to estimate 6 number of parameters if k equal to 3; in first order model number of
parameters to be estimated is 4 whereas, number of parameters to be estimated in case of

second order model it is 10.



Now, if you are number after number of factors is 5, then you see in first order model
you require 6 number of parameters to be estimated, but in the second order model 21
number of parameters to be estimated please remember we are ignoring third and higher
order interactions for the second order model. That means, only up to check to a second

order interaction if we consider this is the number of parameters to be estimated.

So, as the number of parameters to be estimated gross significance grows significantly;
what is required? You require a different kind of design so, that you will have sufficient
number of information and accordingly you will be able to estimate beta 0, beta 1, beta 11

and beta 1.

(Refer Slide Time: 08:40)
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So, if you if you recall my last lecture there I said that in the response surface design

response surface design.
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So, we have given you the first order design first order response surface design and also
we have given you the second order response surface response surface design. So, in
second order response surface design we primarily say that central composite design and

Box Behnken design.

And again in central composite design we say that is spherical and rotate rotatable. So,
depending on the value of alpha; so, alpha will determine that whether it is face spherical
or rotatable. And in spherical case we say alpha equal to k to the power half and whereas,
here in rotatable gave n f to the power 1 by 4 and we I also shown you that that there is
not much difference in case of spherical and rotatable; particularly for different case and
they are more or less equivalent in the sense a spherical one is also a minimum equal
variance ad from the as from at a distance equal distance from the center of the surface

anyhow those things are known to you.

Now, let us say see that which one let us see the central composite design with two
factors and that part is that one looks like this. So, central composite design here it has
factorial points; your central point and axial points. And then depending on the value of
alpha it will be CCD or editable, but here I have showing you a 2 to the power basically
two factorial central composite design where there are 4 factorial points 1, 2, 3, 4, 5; 5
central points and 4 axial point where alpha equal to root over 2. So, that plus minus root

over 1 ok. So, if you adopt this design; so, how many experiments you are conducting?



1,2,3,4 4 plus 5; 9 9 plus 4 13 number of experiments you are conducting. So, if you go
for a two factor case. So, what is the second order model requirement 1 2 to put 6

number of parameters to be estimated.

So, here if we consider see that what are the distinct point; distinct points are here 4
factorial point, one center point another 4 axial points. So, from this figure you see 1, 2,
3,4,5,6,7, 8 plus central point 9. So, 9 unique points are there we require 6 number of
parameters to be estimated. So, number of observation is sufficient to estimate the
parameters including errors. So, in case of 3 factor the case you may go for box Behnken

design that also we have discussed in last class ok.
(Refer Slide Time: 12:44)

Example (Experiment-1)
A chemical engineer is interested in determining the operating conditions that maximize the yield of a process. Two
controllable variables influence process yield: reaction time and reaction temperature, The engineer is currently operating
the process with a reaction lime of 35 minutes and a temperature of 155°F, which result in yields of around 40 percent.
Because it is unlikely that this region contains the optimum, she fits a first-order model and applies the method of
steepest ascent.

PFrocess Data for Fitting the First-Order Madel
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So, for the time being what we will do we will use the central composite design and we
will bring the same example what we have discussed in last burst one lecture when I

when we were dealing with first order response surface.

So, let me repeat a chemical engineer is interested in determining the operating condition
that maximize the yield of a process. Two controllable variables you know influence
process yield or reaction time and reaction temperature and that is the natural variable
reaction temperature and then the engineer is currently operating with the process of
reaction time 35 minutes and temperature 155 degree Fahrenheit which result in yields of
around 40 percent because it is unlikely that this region countries the optimums if it is

the first total model that applies the method of steepest ascent.



In fact, the entire thing though all the steps procedures with reference to this example we
have discussed in last, but one class. And I have also shown you that that the new zone of
experiment will be this one and early and the experiment what we have done with this
operating zone and we got this degree first order regression equation. And then we have
followed the path of steepest ascent and really we landed here that this is the place zone

where the second explore second set of experiment will be will be conducted.

So, let us see that here at this point if we conduct a second order second experiment. So,

what we will do ?
(Refer Slide Time: 14:35)

Example (Experiment-2)

+ The Figure shows the yield at each step along the path of steepest ascent. Increases in response are observed through the tenth step;
however, all steps beyond this point resuli in a decrease in yield. Therefore, another first-order model should be fit in the general vicinity
of the point (§; = 85, &, = 175).

* Anew first-order model is fit around the point (5, = 85, 5; = 173), The region of exploration for 5, is [80, 90], and it is [170, 180] for &,
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Here what happened at this point again; we thought that there may be there may be your
first order relationship. So, as a result at this point with new your factorial points and
new central point the experiment was conducted you see that at this place the factorial
points are 80 and 90; 80 and 90 and 170 and 180, 170 and 180 and the central point is 85,
175, 85, 175.

So, this is one 80; 170, this one is 90; 170 and this one is your then 80; 180 and 90, 180
and this is 85, 175 like this with reference to this with reference to this diagram not with
reference to x and y axis here. We have adopted factorial and central point here and in
the same manner, we have fitted the first order model and the first order model feet when
we have done we found that the interaction and pure quadratic chicks imply that the first

order model is not an adequate approximation.



So, I am not explaining here further that why first order model is not fit the calculation
we are not giving. Because the similar calculation we have we have given you in the in
the first order model you just repeat the same procedure and with this data what you will
find out when you check the first order into that is pure quadrating and the interaction
effect; you found out that they are they are significant and as a result what happened first
order model will not work. So, the curvature in the two surface may indicate that we are
near the optimum like here the curvature is there so; that means, you require a second

order response surface.
(Refer Slide Time: 16:42)

Example (Augmentation of first order design): Second-order RSM

The experimenier decides (o augment a first-order design with enough points io fit a second-order model. She obtains four observations at
(= 0,52 = £1.414) and (x1= £1.414, x2 = 0). The complete experiment is shown in Table 1, and the design is displayed in Fig, 1. In this
second phase of the study, two additional responises were of interest: the viscosity and the molecular weight of the product. The responses

are also shown in Table 1. We will focus on fitting a quadratic model (o the vield response y1.
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Fig, 1: CCD
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Now, to get the second order response surface means by saying to get the second order
response surface means to feed the second order response surface; what do you require?
You require more number of observations, otherwise you will not be able to fit estimate

all the parameters.

For example, if you do these 4 factorial points and one central point then what happened
there are 6 distinct observations; 6 distinct of observations in the says at the central point
whatever 5 observation there at the same point we are treating them as a single distinct
observation. But you require 6 number of parameter to be estimated; so, here number of
parameters all parameters cannot be estimated also error cannot be estimated. So, what
we have adopted here that we have adopted the central composite design with factorial

point, central point and axial points. Please note that this ultimately this example I have



taken from the montgomery design analysis of experiment book and in fact, here 3

responses are included.

But we are interested in the yield only for this explanation purpose here; the viscosity
and molecular weight these two also other two responsibility variable which was of
interest for the experimenter. But for understanding the second order model point of view
we are not interested to discuss anything about viscosity and molecular weight. So, as a
result what I mean to say that I if I write that this part a natural part coded variable for an
yield is y; then you see here there are 4 factorial points and 4 axial points and one central

point.

So, as I told you that 9 distinct observations are there impact at the central point there are
5 number of observations which helps us to estimate the error. So, this is what is the data
you got and this is what is the experimental design; based on this experimental design
this coded variable values are like this and your y value response value the yield value

like this.

So, with this data we can fit a second order response surface; to fit the second order
response surface we are using the coded values, we are not using the natural variables
values. So, but keep in mind that when you conduct the experiment you say the process
with the natural values, when we analyze the experimental data instead of natural values

we have taken the coded values and app and then we fit the models ok.
(Refer Slide Time: 19:35)

Example; Fitting Second-order RSM
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So, this is what is our model.
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Our model is y equal to beta 0 plus beta 1 x 1 plus beta 2 x 2 plus beta 1 1 x 1 square,
beta 2 2 x 2 square plus beta 1 2 x 1 x 2 plus epsilon. So, this is our second order model

involving two variables; two factors X 1 and X 2.

So, this is for first order main effect, this is for second order main effect, this is for
interaction; so, this is for intercept. So, 1, 2, 3, 4, 5, 6 parameters to be estimated to be
estimated; so, what is your design matrix? Design matrix is X; So, what you require?
You have you have to write it first X 0 that is your per beta 1, then your X 1 for beta 1, X
2 for beta 2, then X 1 square for beta 1 1, X 2 square for beta 2 2 and X 1, X 2 for beta 1
2 ok.

So, this now how many observations we have? We have you CCD we have you CCD
here CCD with 4 factorial points 4 axial points and 1, 2, 3, 4, 5 central points so; that
means, 4 plus 4 8 plus 5 13. So, 1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13; so, you have 1, 2
like this the 13 number of observations. So, for x 0 all will be 1 for X 1 that is minus 1,

then plus 1, then minus 1, then plus 1.

So, like this the last one is your minus 1.414 similarly X 2 similar then you square the X
1 row column you will get X 1 square; square X 2 square you will get X 2 square. So,

like this you will be you will be and then multiply X 1 and X 2 you will be getting X 1



and X 2 column. So, then what is the resultant column? Resultant column is this. So, first
column will be all 1, second column will be minus 4 minus 1 minus 1 minus 1, plus 1,
minus 1, plus 1. So, like this what will happen ultimately you will get this kind of this

kind of a design matrix. So, this is known as design matrix ok.

So, you just verify and if there is any mistake you point out in the in the discussion
forum , but this is the procedure first you find out the design matrix; once you have the

design matrix then you also have the y values y the 13 y values you have.

So, what do you require? You require X transpose X to be computed X transpose X
inverse to be computed X transpose Y to be computed; then finally, beat out cap will be
X transpose X inverse X transpose Y that is what we have we have seen in regression

lectures.
(Refer Slide Time: 23:49)

Example: Fitting Second-order RSM
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Exactly the same thing we have done here first found out the X; that X transpose then X
transpose X, then you see that X transpose X inverse, then X transpose Y and beta is X
transpose X inverse; X transpose y this will give you this value. So, intercept is 79.94, x
1 with 0.995; x 2 0.515 then x 1 square minus 1.376, x 2 square in that is minus 1.001
and with x 1, x 2; 0.025 what do I mean? I am saying these are the beta estimate we will
write beta 0 plus beta 1 x 1. So, beta 1 in 0.995; beta 2 is 0.515, beta 1 1 is minus point
1.37, beta 2 2 is minus 1.007 and beta 1 2 is point 0.025.



So, this is your predicted pretty fitting value or fitted regression line.
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So, if you one the that regression equation then it is y equal to 79.94 plus 0.995 x 1 plus
0.515 x 2 minus 1. 37 x 1 square minus 1.001 x 2 square plus 0.25 x 1 x 2 plus error will

be there.

So, this is your regressions response surface. So, you view one fitted value it will be like
this 7 only error term will not be there 0.995 x 1 plus 0.515 x 2 minus 1.37 x 1 square
minus 1.001 x 2 square plus 0.25 x 1 x two. So, this is my responsible this is my this is

what it is fitted one fitted response this is fitted response surface ok.

So, now when you fit the second order model your immediate work is whether the model
is adequate or not and next is whether the parameters estimated are significant or not. So,

let us do this.
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Example: Fitting Second-order RSM

Regression Statisties
Multiple R 099132773
R Square 0982730677
Adjusted R Square | 0970395445

Standard Error 0266200233
Observations 13
ANDVA
dr 33 Ms F Significance F
Regression 5 2467003 | 3649301 | 7966860702 | 5 14TORE-06
Reslelual 7 049637840 | 007091
Tatal 12 28.74307692
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So, using the that regression procedure what you require to do; here you first find out
epsilon cap which is y minus y cap so; that means, you have the 13 observation for y
minus 13 observation for y cap then it will give you the 13 epsilon cap value then you
find out SSE, SSE will be epsilon cap transpose epsilon cap when this one it will give
you a SSE; then you will you will get SST from y only this is nothing, but n minus 1, is 'y

square 1 is s y say square is the variance of this that you know how to compute.

So, then SSR that is basically the regression or model part you will be getting s s t minus
SSE. So, in this manner then r square is basically SSR by SST. So, in this manner when
you compute you will get this one you see that R square value is 0.98 and adjusted R

square is 0.97 and it is quite significantly high; so, that in model is fit.

Now, if you see the ANOVA and ANOVA also the F test talks that that is a very high
value 79.66. So, that we model is perfectly fit and now if we see the interest that the
parameter estimated value that is 79.94, 0.995, 0.515 minus 1.37 minus 1.001 all those
things with the standard error and if you see that t value; t value is quite high except X 1
X 2, but even then it is also 1.87 ok. So, these are very high values so; that means, they
are significant and if you see the P value if you see the P value you see the P value is
very low and only X 1 X 2 a significant at point one probability label. So, a point 0

probability label we can say the interesting term is not significant
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Examplcz Second-order RSM (Contd,)

Table below contains the caleulations of “sequential or extra sums of squares” for the linear, quadratic, and cubic
terms in the model. On the basis of the small P-value for the quadratic terms, the second-order model is fitted to the
vield response. | sequential Model Sum of Squares

Source Sum of Squares ¥ Mean Square F Value Prob >

Mean $0062.16 I S0062. 16
Lincar 101 2 502 260 0.1166
I 028 I 0.5 02 07350
{Quadratic 1795 2 LL] 12688 <i.00/ Supgerted
Cubic LMIE-003 2 1LO2IE-003 0.0
Residusl 049 L] 0059
Todal SO090.90 13 f160.34

“Sequential Model Sum of Squares”: Select the highes! order polynomial where the additional ferms are sigaificant.

2 Order Regression equation: Yield = 79.94 + 3.995.1] + 1}.5]511 -].376.\'[3 -1.00 lx§ + 0.25.11.}':
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So, we can say that the second order response surface is a feet one here. Now question is
that then you may say that why will not go for y will go for only second order why not
cubic ? So, we have gone for quadratic why not cubic? It may give even better result
now quadratic R square 1s 0.98. So, it is already quite large very high. So, cubic I think
we do not require , but what happened if you use cubic one then your number of
parameters to be estimated will be even more so; that means, you require cubic part X 1

cube X 2 cube.

So, ultimately what will happen if you go for cubic one you will find out that there will
be some alias structure means some parameters cannot be estimated completely. So, and
with your if I say the probability value is also you see that cubic one 0.98 F value is very

low. So, that mean cubic part is not there.

So, as a result; so, we can say that second order model is a fit model and this is what is

for today.
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And that [ want to say; what [ mean what that what I wanted to tell you it is clear to me |
hope that you understood that what when; what you will do when you want to fit a
second order response surface, what kind of designs you employ for experimentation
once you get the data how do you analyze the data aging regression and get the
parameter estimated; you check the model adequacy, check the parameters of the models

whether they are significant or not.

Once it is done your response surface is ready second order response surface is ready.
Now this response surface will be used or will be analyzed properly and to see that the
point where we have done the second order experimentation; for example, for example,
here whether at this zone each your optimum zone or not that will be known through
analyzing the response surface. So, there are two modes or two ways we can analyze

using contour plot and using canonical analysis.

Next class I will discuss contour plot based analysis and canonical analysis base inter

analysis as well as interpretation.

Thank you very much.



