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2 k Factorial Design Optimality Issues

Welcome.  We will  discuss optimality  issues in 2 to  the power k Factorial

Design.
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So, before going to the optimality issues, I will discuss with reference to 2 to

the power 2 design that the regression surface as well as how the regression

coefficients are estimated. You have already seen this one, but I want to repeat

it. So, you see this page and I am 100 percent sure that all those terms written

here is known to you. 

The first one is talking about the geometric representation of 2 to the power 2

design.  Here we have 2 factorials  a and b,  when u use the same thing in

regression we denote them by x 1 and x 2. And x 1 has 2 labels, x 2 also has 2

labels;  the  labels  are  denoted  by  minus  1  and  plus  1  as  high  and  low

respectively.



And when you conduct experiments keeping both the factors at low level or

minus  1  minus  1  label,  the  total  observations  what  you  obtained  with

responds  to  with  reference  to  the  y, responds  variable  denoted  by  within

bracket 1, when only at a at high level it will be represented by a only b or x 2

at high level, it will be represented by b and when both the factors will be

high, it will be represented by y. 

Y will be, total of y will be represented by ab. Now same thing when we use

the geometric sign that is algebraic signs. So, the geometric view analogous

representation  in  algebraic  sign  is  this.  What  here  we  have  4  treatment

combinations 1 a, b and ab. And x 1 or a, a is having the values minus 1, plus

1, minus 1, plus 1, x 2 minus 1, minus 1, plus 1, plus 1. And if you multiply

both, you will get x 1x 2 that is AB, factor interaction A, B or x 1 and x 2.

This would be plus 1, minus 1, minus 1, plus 1.

And the corresponding y total, exactly it depend combination, what the way

we are basically following. We are writing in this fashion. You may right in

other way, but this is what is the practice, then you see a left hand side here, I

have  given  you  the  regression  equation  with  that  is  basically  first  order

regression  equation  with  interactions,  for  this  2  to  the  power  2  factorial

design. 

So, here y is equal to beta 0, beta 1 x 1, beta 2 x 2, beta 1 2 x 1 and x 2. So,

beta 0 is the intercepta, beta 1 and beta 2 are the main effect, beta 1 2 is the

interaction effect and error. So, the same can be written in matrix form; y

equal  to  x  beta  plus  epsilon  where  y  is  the  responds  values  at  different

experimental runs, x is the design matrix, beta is the regression coefficient to

be estimated, epsilon is the vector representing the error terms ok.

So, then will come to this side. Here what happens, in this particular equation

with  respect  what  are  the  different  term  like  x.  First  here,  there  are  4

independent observations; independent observations in the sense am saying

independent  treatment  settings.  And either  the average or the total  at  each

independent  observation,  each independent treatment  settings is considered

here. We are considering here 2 terms, sometimes average also can be used.



Now the first column is actually contains all 4 1’s, this is for beta 0; second,

third and fourth column with reference to beta 1, beta 2 and beta 1 beta 2 x.

That is for from estimation point of view otherwise I can write that these first

column is beta 0. Here one x 0 is multiplied, who is taken all the time 1 and

second, third, fourth column with respect to x 1, x 2 and x 1 x 2. So, this is

known as design matrix.

This is the responds vector. This is the error vector and there is another vector

called beta which is beta 0, beta 1, beta 2 and beta 1 2. This part is known to

you. Now when we ask you that you estimate the parameters, what you will

do.
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You will find out SSE which is epsilon i square, sum of i equal to 1 2, 1 2

here number of observations say, that may be let it be n. And then what we

do, this will be nothing but y i minus beta 0 minus beta i 1 x 1 minus beta i 2

x 2 minus beta i 1 2 x 1 x 2, this square and obviously, I equal to 1 to n;

number of observations. Then you will find out del SSE by del beta 0, put 0.

del SSE by del beta 1, put 0 or del similarly del SSE by del beta 2 put 0, del

SSE by del beta 1 2, put 0. And then get you how many equation you will get,

4. How many parameters, 1, 2, 3, 4; 4 equation you will get. Solving this 4

equations, you will be getting all the estimates ok.



So,  this  is  what  you  will  be  discussing.  Now  content  is  basically  the

optimality issues with and when you are talking about optimality issues, it is

related  to  the  variance  optimality, variance  because you are  what  you are

doing.  You are  estimating  beta.  So,  what  would be  the  best  estimate  that

which is which is basically having minimum beta variance beta estimate. So,

using this equation y equal to x beta plus epsilon; suppose that you can use it

prediction  purpose,  y  will  be  x beta  cap.  Now you want  to  minimize  the

variance  of  predicted  portion.  So  similarly,  there  are  different  estimation

issues here and for every such cases.

So,  depending  on  the  situation,  you  may,  your  design  may  help  you  to

optimize the situations like the variance, minimize the variance for the beta

estimate,  minimize  between  prediction  amount,  this  is  what  is  known  as

optimality issues in 2 to the power k factorial integers as such this is true for

any regression model. And this is true for all kind of regressive design, only

the mathematics portion will change little bit depending on the design and the

data  available.  So,  these  issues  will  be  discussing  here  and again  we are

basically  taking  the  information  from  this  book  that  Montgomery  book,

chapter 6.
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So, the explanation I have given you that, if you find out the SSE and then

basically if you just go for SSE by beta 0, beta 1 all those things, you will

actually estimate the beta values this part we have seen earlier. I have shown

you earlier also. 

So now, here what happen, in addition to that we are giving actually what I

am giving you because as x 1 and x 2 takes only minus or plus 1 values. So, if

you put these into these all those minus 1 and plus 1 and this then you are

basically getting this matrix. What is the matrix, what is the matrix basically

where matrix as am giving you here in all those things this matrix that beta 1,

beta 2 all those things, this is the application.

So we have 4 y values, 1, a, b and ab. And x 1 column x 1 column is minus 1

plus 1 plus 1 see minus 1 plus 1 minus 1 plus 1, x 2 minus 1 minus 1 plus 1

plus 1. And this one, minus 1 minus 1 plus 1 minus 1 minus 1 plus 1 and

these. So, if you if you just write down separately, what you will get? One is

beta 0, minus beta 1, minus beta 2 plus beta 1 to plus epsilon 1 ok.
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And then, the estimation point of view, this is the, this is what is the formula

least square; what is the least square formula? X transpose for X inverse, X

transpose y. So, if your data x is this, x is this one, then x stands for you will

be these and then when you multiplied these 2, you will get a very interesting



matrix here. You see that diagonal elements are 4 of diagonal elements are 0,

getting me.

So  here,  you  come  back,  come  back  to  these  you  have  1,  2,  3,  4;  4

independent distinct observations here. Means at each experimental settings,

you may get many observations, but your taking total or average of these and

then you are making them as distinct observations. So, there are 4 because of

this it is 2 to the power 2 designs; if it is for 2 to the power 3, it will be 8; 2 to

the power 4, it will be 60 like this. 

So,  here  this  4  things  are,  now  if  you  want  to  include  that  no  each

observations also will be a that application should be there, then it will be 4 n,

4 n, 4 n, 4 n, 4 n, 4 n, it will they are like this. Now if you multiplied X

transpose into y, another  interesting one you are getting these.  This also I

have explained earlier.

So now what happened, you are basically getting the, this if you think that

this; that means, the second, third and fourth is nothing but contrast for that is

a, b and ab effects. So, left hand side that mean now, beta cap is multiplying

these 2 will give you what. So, if you take the inverse of these, will become

diagonal element will become 1 by 4 and half diagonal element will become

will be will remain 0.
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Then  your  calculation  will  be  like  these.  So,  all  the  contrast  this  will  be

divided by 4. So, the X transpose X matrix is diagonal because 2 to the power

2 design is orthogonal, this is the key things here we wanted to show you.

So, because of orthogonal design, you are getting half diagonal elements 0;

there is no covariance,  independency between the and here when the least

square estimates of model regression come exactly equal to 1 half of usual

effect estimates, that also we have seen earlier. If you estimate the effect, you

will what you will write down contrast by 2 to the power k minus 1 into n,

contrast by 2 to the power k minus 1 into n, that is sense you do. 

So, 2 to the power now if, as we have taken total or average, this part will not

come; so, it will be by 2 to the power k minus 1 and then contrast by 2 to the

power 2 minus 1. So, it will be contrast by 2 that will be the effect of A, B

like this. But here is the regression coefficient we have shown you that beta j

regression coefficient and effect is A j and this are relationships earlier we

have shown you ok.

So, with reference to this x transpose x beta and the prediction part y cap,

then we will we will explain now the optimality issues.

(Refer Slide Time: 14:18)

First of all, what will be the estimate of variance of beta?



(Refer Slide Time: 14:22)

If you recall the regression lectures, there we have shown you that variance of

beta cap is sigma square, X transpose X inverse. Actually the estimated, if

you know sigma square, you write down sigma square. Suppose I write this

sigma square, this. Now that is because u have beta 0, beta 1 like this. But if I

want to know the, this is other way we can, we have written as co variance.

Now if I write variance of beta j cap, then this is sigma j square, the j th

element of j th diagonal element of x transpose for x inverse.

So, X transpose X inverse of 2 to the power 2 design is 1 by 4, 1 by 4, 1 by 4,

1 by 4 and other part is of diagonals are 0. So, that means, everything divided

by  1  by  4.  So,  actually  what  happens  then,  so  variance  of  any  beta

component, any beta cap will be sigma square by 4. Now, and this is what is

the minimum variance, this is what is the minimum variance. 

Now let us read out the points here, the minimum possible variance of any

model regression coefficient in a 2 to the power k design is sigma square

divided by 2 to the power k into n. Now a design that minimizes variance of

beta cap is known as D-optimal design. So, this is it is mathematical issue,

that  D-optimal  design,  but  from the  practice  point  of  view, but  from our

application point of view.



So, a D-optimal design is one which minimizes the variance of the estimated

parameters here. Now the D terminology is used here because it maximizes

the determinant  of X transpose X. The D is coming from the determinant

point. 

So, that is why it is known as D-optimal design. And 2 to the power k design,

the way we have explained, the actually that the, that is what the 2 to the

power k design also. The 2 to the power k design is a D-optimal design and it

for first order model and first order model with interactions.

(Refer Slide Time: 17:26)

So, essentially what we have done, we have explained from optimality point

of view that variance of beta, this would be minimized and it is done in 2 to

the  power k design using the  least  square  estimates  in  the  manner  that  it

optimizes the determinant of these or maximizes these determinant of these

and collectively these of design is known as D-optimal design.

So,  what  do  I  mean  that  D-optimal  design  is  one  which  minimizes  the

variance of beta cap and 2 to the power k design is D-optimal design, 2 to the

power k design with a first order a with interact and with interaction also it is

D-optimal design. So, this is the first. Second we will see another variance.
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Suppose, when we say y cap is x beta cap and many a times what happen, we

will  be interested  to know the variance  of predicted value.  So that means

variance of predicted value that may be variance of y, suppose x 1 and x 2.

Here we are writing y cap x 1 and x 2 because only 2 to the power 2 design,

we are x we are taken for expandation purpose. So, then what will happen,

what will happen to this this will be beta 0 cap plus beta 1 x 1 beta 1 cap x 1

beta 2 cap x 2 beta 1 2 cap x 1 and x 2, this is the predicted part.

So that means, you are interested to know the variance of beta 0 cap plus

variance of, these plus these plus beta 2 variance 2 plus beta 1 2 cap x 1 and x

2. Now x 1 x 2, all those things are fixed values because we have seen the

design matrix. So, can it not be written that this is, now again what I mean to

say that this beta 1 be the 0 this orthogonal design. So, that we have seen the

co variance part of beta 0 is 0. So, because of independence, we can write that

this is beta, variance of beta 0 cap, then x 1 square variance of beta 1 cap plus

x 2 square variance of beta 2 cap plus x 1 square x 2 square variance of beta 1

2 cap.

So, what is variance of beta 0 cap? That is sigma square by 4. We have seen

earlier then x 1 square into sigma square by 4, x 2 square into sigma square

by 4 plus x 1 square x 2 square into sigma square by 4. So, it is sigma square



by 4 into 1 plus x 1 square plus x 2 square plus x 1 square x 2 square. So, this

is  variance  of  predicted  response,  this  is  known as  variance  of  predicted

response. Suppose a, if all x 1, x 2, 0 0 what will happen. So, these value will

be, suppose the variance of y cap given x 1 equal to 0, x 2 equal to 0, this

value is sigma square by 4. 

If variance of y cap x 1 equal to 1, x 2 equals to 0. So, these will be. So, these,

what will be happen, this one will be sigma square by 2 or other way this

equal  to variance  of y cap,  x 1 equal  to 0 and x 2 equal  to 1.  If  we put

variance y cap x 1 equal to 1 and x 2 equal to 1, what will happen this one,

sigma square by 4 into 1 plus 1 plus 1 plus 1. So, this will become sigma

square.

So, this is what is the maximum variance that can occur in the in the response

when you predict because when all x 1 and x 2 both are the high level 1, x 1,

1; x 2, 1. So, that in that the corner point basically where the, everything is

the  square  term  whether  the  x  1  or  plus  1  or  minus  1,  this  occur  in  a

maximum variance occur. So, what we require then, we require a design that

will minimizes the maximum of predicted variance.
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So,  we  you  want  a  design  that  minimize,  minimize  the  maximum  of

predicted, maximum variance, maximum of variance of predicted value. So,



minimize that many maximum variance for the predicted response will occur

at the corner points and you want a design you have to minimize this one,

these design is known as G-optimal  design. And 2 to the power k design,

factorial design is G-optimal with first order and model first order model and

with  interaction  and model  with first  order  model  with interaction  are  G-

optimal.

So, this is the second issue, second optimality issue here. Now you read out

the this point third point, here the last but one point, the smallest possible

value of the maximum prediction variance over the design space is p sigma

square by n, where p is the number of model parameters and n is the number

of  runs  in  the  design.  This  is  what  is  the  smallest  possible  value  of  this

maximum  prediction  variance,  2  to  the  power  k  designs  are  G-optimal

designs  for  fitting  the  first  order  model  and  first  order  model  with

interactions.
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Suppose, we have lot of points so, you want to see that,  what will  be the

predicted variance for lot of points. You are not basically predicting at one

point. You have lot of several points, so that means, what will happen; the you

will  find  out  different  kind  of  variance  at  different  predicted  variance  at



different points. So, under such situation what happen, you will basically find

out the average prediction variance.

So,  we were talking  about  Average prediction.  So,  this  average  prediction

variance is denoted by, you just first find out the total area. Here we have the,

what is the design space x 1 minus 1 to plus 1 and x 2 minus 1 to plus 1. So,

within this design space, what is my variance of this one that predicted one, x

1 x 2. So, you integrate this, d x 1 and d x 2. 

This is basically total you are getting. Now once you divide it by the area, 1

by a.  So,  then you are getting  the average  prediction  variance,  this  is  the

formula. So now, let us think a 2 to the power 2 factorial design case, what

this is. So, this is minus 1 sorry, let me write minus 1 plus 1 and then minus 1

into plus 1, this is 2. Similarly, minus 1 plus 1, what is the length; this is 2.

So, what is the area 2 into 2, 4.

So, I will write these then, 1 by a, here minus 1 to plus 1 and then minus 1 to

plus  1  and  then  what  is  this  value?  You  have  already  seen  what  is  the

predicted variance of this? I think variance of this is you see, we have written

variance of this equal to sigma square by 4 into this. So, you write down this

one as sigma square by 4 and this is 1 by 4, I am writing, a equal to 4, 1 by 4

sigma square by 4 into 1 plus x 1 square plus x 2 square plus x 1 square into x

2 square, d x 1 and d x 2. So, first you do it with reference to d x 1 then, put

the values and x 2 put the values, then the result and value will be 4 sigma

square by 9.

So, in 2 to the power 2 design, average prediction variance is 4 sigma square

by  9.  Now  what  do  you  want?  We want  also,  this  to  be  minimized  the

minimization of average prediction variance. So, when you say lot of points

to, in the design space, you are predicting the values at lot of in the design

space lot of values. So, this is known as I-optimal design, I-optimal design. 

So, these are the few things you learnt that, your design is when you develop

regression surface, that time how you use regression equation that is you have

learnt earlier. Today, we have repeated this thing, then we say that when you

are estimating some of the parameters, the variance of those parameters to be



minimum and that was that is in mathematic known as D-optimal design. So,

we have seen that 2 to the power k design is D-optimal for the first order and

first order model with interactions and then we have we have shown you that

G-optimality.

So,  G-optimal  design  is  one  which  minimizes  the  maximum  prediction

variance and we have seen that our, 2 to the power k design is G-optimal and

finally, I-optimal design. And here, in the case of 2 to the power of k design,

the I-optimal value is just 4 sigma square by a this is I-optimal also. So, this is

little bit advance topic for that optimality issue, that optimality issue will be

dealing further in detail in response surface when we discuss response surface

methodology, that  time this  optimality  again  come and we will  discuss to

some extent there also ok.

Thank you very much, hope that you have enjoyed this class also.


