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Lecture – 23
Multiple Linear Regression: Model Diagnostics and Testing for Lack of Fit

Welcome in this lecture we will see some of the diagnostics for multiple linear regression

and one more concept we will introduce which is known as lack of fit and test for lack of

fit. 

(Refer Slide Time: 00:42)

Essentially the diagnostics measures, lack of fit and its tests will be discussed.



(Refer Slide Time: 00:49)

And for model diagnostics we will be using standardized residuals. 

(Refer Slide Time: 00:59)

Standardized residuals then studentised residual and press statistics, press statistics and

also we introduce leverage points or influential observations and these are the things will

be discussed for diagnostic and then I already told you we will go for lack of fit. LOF

related to regression, everything will be related to regression linear regression, multiple

linear regressions.



So,  let  us  see  the  2  standardized  residuals by  this  time  you understand what  is  the

meaning of standardized. So, you have i equal to 1 to n number of observations. So, you

have n number of residuals e 1, e 2, e i, e n. So, what is the expected value of e i, it will

be 0.

So, by standardized residual we mean we will create suppose di, where D i equal to e i

by MSE you know the concept of MSB also. So, this is nothing, but e i by sigma square

cap the sigma square cap is estimated by MSE. So, it will follow normal distribution, we

and it variants for all standardized. So, what do you have done, you have essentially this

is nothing we can write e i minus expected value of e i divided by variance of e i square

root that is the standardization. So, this one is 0 and like this. So, it will it should be all

most normal 0, 1.

You read normal and what happened easier, if suppose this is unit normal distribution

this is minus 3 and this one is plus 3 it is seen that most 19 9.7 percent observation will

fall under this, but in most of the observation for minus 3 to plus 3. So, if any of the

standardized residual is more than 3 in absolute value then what we can say that it is not

normal it is out layers kind of things or other way I can say that it is not normal. So, this

is, this is what is the studentized, the standardized a residual will tell you standardized

residual will tell you about 2 things; obviously, we can assume that as it is part that much

plus minus 3 sigma level away.

So, we can say also say that their out layered also, sometimes we can say in this manner

also and what other way you can say that this is not normal. Now, second one is your

studentized residuals. So, before studentized residuals you just know what is hat metrics.

So, all of you know that y cap equal to x beta cap and if I put the beta cap is nothing, but

x transpose,  x  inverse,  x  transpose y then the  resultant  quantity  is  x,  x  transpose,  x

inverse, x transpose y. Now, we would say that H equal to x, x transpose, x inverse, x

transpose and this is H y, this H is a very interesting matrix which is known as hat matrix

and what it says, it maps the vector of observed values into the vector of fitted values.

So,  that  mean the hat  matrix  gives  you information  about  a every observation  some

statistic  about every observations that is a beautiful thing,  that beta coefficients talks

about the influence of the variable on the response, where in the from the hat matrix you



will know that influence of every individual observations. So, on the response that is the

interesting one. 

So, if y cap is H y then e then residual will be y minus y cap which is y into i minus H.
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Now, what we require, suppose if we require that covariance of e then this will be I

minus H covariance of y which is nothing, but variance of sigma square I minus H. Now,

then what is the variance of i th observation, the variance of i th observation will be

sigma square 1 minus the I th diagonal elements of the H matrix which is H i i.

Means a, we can write like this that H 11, H 22, H i i like H n n we have n observations.

So, n cross n this will be and definitely this will be H 1, 2 like this other values will be

there, other values will be there the diagonal elements H i i is very important element,

this is the influence of the observed observations on the regression line or in regression

plane. So, then your variance for i th variance will be this. So, i th residual variance will

be sigma square 1 mine by this then the studentized residual is if we say this is r i which

is e i minus variance of e i which is sigma square 1 minus H i i.

Obviously you can write this one this divided by MSE 1 minus H i i and all those things

you know and then what will be the variance of r i variance of r i will be 1 because it is

this minus the min value will be 0 by this the variability this also 1 mean 0 mean this 0

variance  is  1  well.  This  is  known  as  studentized  residual  all  right,  it  is  similar  to



standardized  residual,  but  if  some of  the  observations,  in  standardized  residual  what

happened you have considered  e  i  by sigma that  m s e  square root  of  a  m s e  you

consider,  but  here  you  are  multiplied  this  term,  if  everyone  is  contributing  equally

fantastic,  but otherwise what happened if there is some of the observation contribute

more H i i value will be more and then its contribution to the residual will be also more.

So, this is what is studentized otherwise in interpretation point of view they are similar to

standardized residuals.
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Now, we will come to another very important one is press statistics or press residual,

press stands for prediction error sum of squares, What is the procedure here? 
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Procedure is you have i 1, 2 dot i n number of observations and you fitted a model y

equal to x beta plus epsilon, instead of these you do one thing you fit a model y i equal to

x beta or if i say x beta i something like this plus epsilon or epsilon i something like this.

What I mean to say you remove the i th observation while fitting this model, then what

happen if  you remove the i  th  observation  you and then using the fitted  model  you

predict the value of i th observations.

What you are doing? You are fitting the same regression model not considering all the

data points i th observation you are removing or omitting then using these fitted model y

equal to y fitted equal to x beta cap you are predicting the i th observations, then the error

or what you are getting that e i a within bracket i, this one will be nothing, but that y i

minus y i cap. You got this within bracket i we are using, we are saying that when you

have fitted this model you have not considered the i th observations. Now, you can repeat

the same thing, suppose you start with first observation find out this, what is this u 1,

second observation find out this like this e i like this e n. So, you have total n number of

residual values.

These are all basically predicted residuals basically and this value you are getting using

this kind of approach and then you find out the press, what is the press will be? Pressure

will be sum total of all those residual square i equal to 1 to n this is nothing, but sum total

of i equal to 1 to n, y i minus y i y within this cap square. So, this is what is known as



press. So, by our listening this much you may be thinking that you have to go for  n

number of regression,  means n times you have to run the regression first  format the

observation 1 then omit the observation 1 like this way you continuing up to n if n equal

to 1000 that mean you have to run the program 1000 times ok.

But it is not so because even in from the one regression model also one time fitting

reason you will get and that is interestingly that press is sum total i equal to 1 to n e i by

1 minus  H ii  sorry. So,  you do not  require  to  go for  n  times  during  the  regression

omitting 1 observation at a time, you repeat the regression using all the values and then

find out hii and also find out e i then press H i equal to 1 to n e i i by 1 minus H i i that is

what is the what is the our e within bracket i.

So, that mean if you see the studentized residual that type that time, 1 minus H i we have

subtracted  (Refer Time: 15:15)  consider this place is this,  then we will go for, suppose

that  here  what  happened  every  observation  which  is  omitted  is  predicted  using  the

regression model fitted through rest of the observations.
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Then we can get also R square prediction, this will be 1 minus press by  SS T usually

what is our R square? R square is 1 minus SSE by SS T here instead of SS T we are

using press. Now, let us see the example results.



So, the viscosity example what we have disk I have discussed earlier. So, here the when

we have computed r square using SS R square equal to 1 minus SS R by SS T we got that

value is 0.93. Now, when we are using r square prediction using the press statistics this r

squares  prediction  value is  coming 0.89.  So,  what  is  the conclusion here? We could

expect  the  model  can  explain  about  89  percent  of  the  variability  in  predicting  new

observations as compared approximately 93 percent of the variability in the original data

explained by the least square feet the overall predictive capability of the model based on

this criteria seems very satisfactory.
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Now, come to the influential diagonals influential diagnostics or influential observation

here 1 is leverage point, what is the leverage point the elements H i i this should be H H i

j the elements H i j of H may be interpreted as amount of leverage exerted by y j on y i.

Inspection of the element H can rebuild points that are potentially influential by virtue of

their location in the x space. So, as I told you the leverage points when if you see the

diagonal elements of H, H 11 to H n n.

So, these are the basically the influences are exerted by each of the observations. So, and

also up diagonal elements are also there. So, there what happened the actually, if when

we compare the y i object,  actual  observation with the predicted observations. So, that

sends  you  have  to  think  of.  So,  another  major,  one  major  used  for  this  influence



generation arm a quantification of influence that is known as that is known as D d beta

measures distance measure D 1 or even D i. 

So, it is basically D i. So, this is nothing, but what happened the same way that you

eliminate the i th observations and feed the regression line and then the beta whatever the

estimated value you are getting and when this estimated value and the full model. Means

in full means the including all the observation you got beta value then using this 2 and

the x design matrix this kind of this kind of distance is measured here it is D i, this

distance is well if any of the D i values for is greater than 1 then that is influential. So,

here also you may be thinking that you require to you require to go for n number of

regression it is not because we have this a hat matrix.

From this hat matrix this D i can be computed like this R i studentized residual that is

also you know p is the number of parameters to be estimated known and H i i is coming

from hat matrix. So, if any D value is more than 1 that is influential.

(Refer Slide Time: 20:24)

Now, I will come to an another interesting concept which is known as lack of fit and how

to test lack of fit. 
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First  let  us see this diagram,  let  us assume that this  is x the regression and y is the

dependent variable it. Here I am showing with one regression variable, but it can be for

many regression variable. Suppose x 1 is the first observation x 2 second observation x i

sorry first fixed value for x these are the m number of fixed values for the regression.

Now, let the i this 1 i th 1 is the x i 1 and here suppose you have conducted experiment

keeping x at x i suppose n number of times or n i number of times. So, your observations

will  be y observation  will  be n i  here,  n i  number of observations  you will  get and

similarly here also n 2 here n 1 and like this and you have seen in one way analysis of

variance also suppose keeping the power factor 165 number of observations experiment

were done like this so in the same manner. Now, when you fit the regression equation for

one factor experiment case you will get a regression line like this. So, any point suppose

for so; that means, what is that this point on the regression line.

This point on regression line is y i cap. So, y i cap is the value of y when x equal to x i.

So, this is basically I can say the expected value of y given x equal to x i kind of things.

So, this is y i cap; now you have n 1, n i number of observations here. So, this n i number

of observations if you compute the mean value that is y i bar maybe falling here, now

you constant what is the what is the error here, total error here if i consider a general

suppose you think of a a particular observation y i j, i from 1 to m the mp regression

fixed values and j is basically the replication at a particular fixed value of x.



So, now what have been the total error for a particular observation y i j will be that y i j

minus y i cap. So, these can be so y i j minus y i f can be partitioned, like this y i j minus

y i bar. That means, the of the mean value or average value of all the y when x equal to x

i which is coming here, plus we can write that y i bar minus y i cap. So, then each of the

observation here is subtracted by their observations means. So, this is giving you pure

error and then remaining one because total error is what, every observation minus the

predicted value. So, the pure error, pure error is this basically every observation minus

those observations mean value or average value then the rest is lack of fit rest is lack of

fit.

So, actually what do you mean to say there is lack of fit if the mean of the observed y for

x equal to x i will not coincide with the predicted value, if it is not does not coincide with

the predicted value. So, that is your lack of fit. So, now this is basically the deviation part

you take square it, you square this side take the sum for across all j j equal to 1 to n i and

across all i i equal to 1 to m and you do algebraic manipulation you will be getting this

equation.

Where you will be getting the sum square error which is sum square pure error plus sum

square lack of fit, now see this slide. So, I told you this is this. So, sum square pure error

is y i j minus y i bar square this one and you have n i observation for at the x i level. So,

as there are m such levels. So, total number of observe that degrees of freedom available

with the pure this error is n minus m and lack of fit you are getting from this formula that

ni e a is this. So, so; that means, what happened; now lack of fit is computed.
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So, let us compute a statistics to say that whether lack of fit is significant or not. So,

these statistics is f 0 SS lack of fit, what is SS lack of fit? This one by its degree of

freedom by its degree of freedom means what happened how many x ray levels are there.

So, i equal to 1 to m every level you are computing and you have also 1 degree lost that

is  why what is  happening for p number of parameters  you have lost  to that  p value

degrees of freedom. So, m minus p by SS pure error by its degrees of freedom because

pure error degrees of freedom the remaining degrees of freedom from SSE so that is n

minus m. So, you are getting m s lack of fit by m s pure error.

Now, expected value of m s pure error is sigma square and the expected value of m s lack

of fit is sigma square plus this quantity. So, what is beta 0 minus this or beta 0 plus this?

This is nothing, but your the predicted value. So, an expected value of y i that also that is

the value which is basically falling on the regression line if they coincide this value will

become 0. 

So, that will lack of fit and this will be same so, but if they do not consider this quantity

becomes more than 0. So, expected value of m is lack of fit will be more than sigma

square, if the true regression function is linear then what happened expected value of y i

will become this beta 0 plus this in that case this becomes beta 0 plus this means this

quantity becomes 0 and as a result I told you expected result lack of result will become

sigma square.



If  the true regression function is  not linear  this  will  not become 0,  this  quantity  not

become 0 because expected value y i is not this in that case this quantity become positive

and there is more than this, their lack of expected or a lack of fit is more than sigma

square. If the true regression line is linear now the first case then this quantity f 0 follows

f m minus b m minus 1 distribution and the and what happen the regression function is

not linear then your f 0 the computed value will be greater than the theoretical f value. 

So, so thank you very much for interesting hearing and I hope that you got enough inputs

for regression and also enough inputs for anova, apart from the basic statistics part what

we have given you earlier. So, I can tell you that the statistical poor statistics part for

understanding the design understanding and analyzing that the desire experimental data.

So,  that  is  covered  now and  one  important  thing  is  to  be  covered  further  from the

theoretical point of view is the sample size.

How to calculate the adequate sample size under different situations? So, that will also

be discussed in. In fact, when we go for other lectures where we will, we bring those all

those concept again all those sample size part we have discussed, but again we will bring

all those things together ok.

Thank you very much.


