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Welcome,  today  we  will  continue  with  linear  regression.  Today’s  topic  is  sampling

distribution of regression coefficients. So, what we will cover in this lecture sampling

distribution of regression coefficient, test on individual regression coefficient and group

of coefficients, confidence interval on the individual regression coefficients.
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So, let us now start with the regression equation.
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You have  already  seen  that  the  linear  regression  equation  is  y  equal  to  x  beta  plus

epsilon, where beta we have k plus 1 beta values like beta 0 beta 1 to beta k plus 1 into 1.

And x is the design matrix epsilon is the error terms. And you have also seen that the

estimate of beta is x transpose x transpose x inverse x transpose y that also you have seen

where x is the design matrix, so y is data matrix and this part we have completed in last

class.



So, if you see the slide, you see that there are n plus 1 observation for y, beta is k plus 1

into one create the parameters of regression and x is the design matrix, where the first

column which all  having one value.  And then these are the data on k number of for

various factors otherwise I can say k number of predictor variables x 1 to x k. Essentially

x is n into k plus 1 matrix. And from sampling, we know the sampling theory we know

that the estimate beta cap this is a random variable.  So, it  has it expected value and

variance component also suppose we want to know; what is the expected value of beta

cap. It will be beta and that is; what is unbiased estimation means beta cap is the estimate

of beta, beta is the regression coefficient vector, which is from the population point of

view. And beta  cap is  the regression coefficient  the estimate  of this  vector  from the

sample data.

So, it can be proved also that the expected value of beta cap is beta. So, how can you do,

you can write that expected value of beta cap equal to expected value of x transpose x

inverse x transpose y this. Then you can write expected value of x transpose x inverse x

transpose then y value is nothing but x beta plus epsilon, you are getting from here. And

if you multiplied this then you get x transpose x inverse x transpose x beta x transpose x

inverse x transpose into x beta plus x transpose x inverse x transpose epsilon.

Now, x transpose x inverse x transpose x will be identity matrix I. So, this one will be

expected value of beta plus x transpose x inverse x transpose expected value of epsilon

because this is coming out of expected value this is the fixed values. So, beta being a

constant parameter value, so it will  be beta and expected value of this error term by

assumption is 0. So, this will be beta.
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So, you may be then what is the variance of beta cap other way we can say covariance of

beta cap.

(Refer Slide Time: 04:57)

It can be proved there this will be sigma square x transpose x inverse where r sigma

square is the sigma square is the SSE estimate of sigma square will be SSE minus n

minus k minus 1. You already seen what is SSE sum square error. So, we will discuss

about this SSE later on also. So, other way we can write how did it, it can be also proved.

So, covariance of beta cap is nothing but expected this is also expected value of your



beta cap beta cap minus beta, beta is the expected value of beta cap this into beta cap

minus beta transpose.

So, you can see from the slide that that we can prove that beta cap minus beta. So, you

are writing this beta cap is x transpose x inverse x transpose y. Now, you are putting the

same way when we calculate mean value and that this one and then you found beta plus

of this and beta and this beta is cancelled out. So, you are getting you are getting beta cap

minus beta is x transpose x inverse x transpose epsilon. Here you assume x transpose this

is basically beta, and this one is this now, this beta minus beta is canceled out and this

remains.

So, now what will be then that beta cap minus beta transpose, this will be transpose of

this, and this quantity will be this transpose x transpose x inverse, and here x will come.

This x will come x transpose, transpose is x, epsilon transpose is there x transpose x

minus inverse one this because this is a symmetric matrix. So, then your expected value

of beta cap minus beta and beta cap minus beta transpose this is nothing but expected

value of x transpose x inverse x transpose epsilon epsilon transpose x x x transpose x

inverse x x transpose x inverse.
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So, this is a fixed one, this one is also fixed quantity. So, if you taken out all those things

then ultimately you will be getting expected value of epsilon epsilon transpose into this x

transpose x inverse x transpose x into x transpose x inverse. Now, this quantity become I.



This  quantity  is  what  sigma square;  this  quantity  becomes  sigma square.  So,  sigma

square x transpose x inverse, so that means, essentially we got beta cap which will be

multivariate normal basically whether there are so many. And it will be N there are k n

plus 1 number of beta values and then it expected value is beta and covariance matrix is

sigma square x transpose x inverse. So, this is known as sampling distribution of beta

cap.  And I  already told  you that  the  estimate  of  sigma square  will  be this  which  is

nothing but A C square coming out of the error terms.
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Now, let  us see that from sampling distribution two that test of individual regression

coefficients. Here took over the concept is individual regression coefficient and group of

coefficients. First we will discuss on individual regression coefficients. 
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How many  coefficients  we have  we have  beta  0,  beta  1  to  beta  k  that  is  k  plus  1

individual coefficients. We want to test every coefficient whether they are significant or

not  that  means,  we want  to  test  beta  j  for  j  equal  to  0,  1,  2,  to  k  here  test  means

hypothesis test, test means hypothesis test. So, you have seen earlier that hypothesis test

mean  there  will  be  null  hypothesis,  there  will  be  alternate  hypothesis.  Our  null

hypothesis is beta j equal to 0, j equal to 1 to we have put 0 to 1, 2 like k; and beta j not

equal to 0 is the alternate hypothesis and obviously, for at least 1 j for at least 1 j, but

here we are interested to test individual parameter.

So, this is in total by hypothesis tests for totality that whether this part in under model

adequacy test I will discuss again, but in this case suppose if I consider only the j th

regression parameter, then this is not applicable, suppose the beta 0. So, we want to test

beta  0 then H 0 is  beta  0 equal  to 0 H 1 is  beta 1 not equal  beta 0 not equal  to 0.

Similarly, beta 1 equal to 0, beta 1 not equal to 0, like this. So, individually we are testing

here.

So, general term H 0 beta j equal to 0; and beta j not equal to 0 what we would test

statistics we will use here we will use a statistics called t statistics here. Suppose we

create a statistics like this which is beta j this is a random variable estimate value minus

expected value of beta j cap divided by square root of variance of beta j cap. This is t

distributed, because of because you have seen earlier that this from standard from central



limit theorem, this can be z distributed also provided sample size is large. And as and the

variance of beta j these are all estimated one exact not known. So, we will go for the to t

distribution. So, this is tested this is true when H 0 is true means beta j beta j equal to 0

or H 0 is true as a result, we say this is t 0. So, this t 0 this follows t distribution when H

0 is true.

Now, this can be written like this beta j cap minus expected value of beta j cap already

you have seen this is nothing but beta j. Now, variance part we have already seen that

sigma square we have seen that covariance of beta cap equal to sigma square x transpose

x inverse. So, this can be written like se square if we assume that the estimate is se

square and into this suppose that C 0 0, C 1 1 to C k k and this side also that is C 0 1 like

this the off diagonal elements are the variance component. So, this C 0 0 all those things

what I am saying this is the component of x transpose x inverse.

So, C 0 0 sc square C 0 0 se square will be that variance of beta 0 cap. Similarly, C 1 1 se

square will be variance of beta 1 cap like the C j j se square will be variance of beta j

cap; and obviously, j stands from 0 to k. So, what we like then and then that variance of

beta j cap is sigma 0 sigma square in to C j j.  Now, the sigma square estimate is se

square. So, we are writing this as se square C j j. So, and under H 0 beta j equal to 0, so

this quantity becomes 0. So, t 0 become beta j cap divided by square root of se square C j

j. Please keep in mind C j j is the jth diagonal element of x transpose x inverse that is C j

j j th diagonal element of x transpose x inverse.
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Now, what  do  you will  do you all  know that  hypothesis  testing  procedure.  So,  you

calculate t 0, this follows t distribution with certain degrees of freedom that degrees of

freedom here is n minus k minus 1 degrees of freedom, because this is the error degrees

of freedom n minus k minus 1. So, if you create  a t  distribution curve like this and

suppose that your it should be a two-tailed test, this side alpha by 2, this side alpha by 2,

then this is t alpha by 2 n minus k minus 1 and this is minus t alpha by 2 n minus k minus

1. So, if the absolute value of t 0 is greater than t n minus k minus 1 alpha, alpha usually

will be 0.05 then we can say the corresponding beta j parameter is significant; it is not 0,

it is not 0, it is far away from 0. So, this is the test, this test is also known as you just see,

so sorry I have done one mistake that is alpha by 2, alpha by 2, because it is a two-tailed

test. Please remember when it is two-tailed alpha by 2, when it is one tailed alpha.
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So, see the slide also, so this type of testing is called marginal or partial test, individual

regression parameter is tested here. Suppose, I say that y equal to 50 plus 2.05 x 1 plus

3.6 x 2 then maybe minus 0.46 x 3 plus error term then what we are saying beta 0 equal

to this, beta 1 equal to this, beta 2 equal to this, beta 3 equal to this. So, by this test we

are saying that whether this beta 0 50 is essentially 50 or it is basically nothing more than

0. So, as a result what you are doing you are first finding out the beta values suppose

beta 0, beta 1, beta 2, beta 3 here this estimated values these values are nothing but here

2.05, 3.6 minus beta 1 beta 0 beta 1 beta 2, so this is 2.05, 3.6, minus 0.46, these are the

estimate value estimated value.

Now, you are finding out the standard error of beta j, let us give it as a cap. So, suppose

without when I am doing any calculation suppose we know that the standard error is here

4.0, here 0.50, here 1.20 and here may be 0.04. Then what will be the t value t 0 value, t

0 value will be estimate divided by standard error, so 2.05 by 4 it is almost 0.48 kind of

thing then two point oh sorry the beta 0 is 50, I am extremely sorry 50 by 4 50 by 4

minutes it is 12.50. 2.05 by 0.5 minutes 4.10; 3.6 by 1.2 means 12 into 3, it is almost 3;

and 0.40 by this I think this is your 100 you multiply then it is 4, and if you 40 then it is

almost 80 and this is minus 80.

Now, if  you compare suppose your alpha is 0.05, then you compare t,  suppose your

sample size in this example n equal to let it be 50. And what is the k value, k value is that



means, 1 to 3 k plus 1 is 4 k equal to 3 k plus 1 is 4, so that mean then n minus k minus 1

this value will be 50 minus 4 that is 46 and alpha by 2 equal to 0.025. So, find out this

value from the statistical table. If this value usually I think this value will be may be

around 2, this value will be around 2, so see this is 12.50, this is 4.80, this is 3, this is

minus  8.  So,  absolute  value  of  the  all  these  are  more  than  two  that  mean  all  the

parameters are significant individually significant that is what is the individual parameter

test, so that means what I say you have data you have data set y.
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You have data set y, you have x. So, x 1, x 2 to x k, and then here y 1 to y in this data you

have. From there using beta cap equal to x transpose x inverse x transpose y calculated

these, you calculated the variance and all those things. And then from there you have got

the equation this is suppose you got this equation and this type of the step up called

computation we have and then this is the result that all the regression coefficients are

statistically significant, this is known as individual or marginal test.
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But many a times what happened suppose you have a large number of data variables,

suppose  you  do  not  want  to  test  individual  parameter,  you  want  to  test  subset  of

variables. Suppose, I have 10 x variables, 10 x variables. So, maybe I want to test that

the first 5 a sub I have arranged them based on certain knowledge that the first five are

important and last five not important, but I want to be WCO that yes last five is not

contributing.

So, in that case what happened you want to test all those five regression coefficients

simultaneously and then accordingly reject the null hypothesis that this set of variables

are not  contributing  or they are contributing.  So,  essentially  the mathematics  here is

when I have k regressor variables this is my model, and these are the things what is

known to you. And then I have dividing into two parts one is that beta, beta 1 and beta 2

where beta  1 is  r  cross  1,  r  where number of  variables  and as  I  have  p number of

parameters to be estimated where p is equal to k plus 1. Then p minus r cross 1 this

number  of  variables  we  are  partitioning  that  means,  what  you  are  doing  you  are

partitioning x which is basically x 1 x 2 to x r to x k, you are making two partition here.

This side you are saying x 1 and this one using in here r number of x variables and here

then  what  happened  total  is  k  minus  r  number  of  x  variables  are  there.  Other  way

actually, but please remember there is there is x 0 also, x 0 which assumes zero all the

time. So, this partition from the beta point of view we can write just one will be added



only suppose beta is beta 0, beta 1 to beta r to beta k. So, we are taking first r cross 1 and

then if it is r cross 1 then this let it be r minus 1, and then remaining p minus r, where is p

is equal to k plus 1 minus r, so these two now this side is capital beta 1, this is capital

beta 2, so that is what is denoted here.

Here you see beta equal to beta 1 beta 2 like this. Now, your test is that this r number

variables  or r  number of degrees  and coefficients  here considering x 0 I  am talking

telling r number of regression coefficients are not significant, then H 0 is beta 1 equal to

0 and obviously, alternate hypothesis will be H 1 beta 1 not equal to 0. So, then what you

can do you can write down the regression equation in this fashion y equal to x beta plus

epsilon is equal to nothing but x 1 beta 1 plus x 2 beta 2 because see this partition will

give you this.

(Refer Slide Time: 25:52)

So, as a result what happened, as a result what happened if H 0 is true, suppose H 0 is

true then this part become 0; and y will become reduced model will be y equal to x 2 beta

2 plus epsilon. So, that is what is written here reduced model is y equal to x 2 beta 2 plus

epsilon.
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So, essentially what happened then we have a full model full model which is y equal to x

beta plus epsilon. And we have reduced model where we are writing x 2 beta 2 plus e

like this.
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So, ultimately here in this model as x 1 beta 1 term is not included so that means error

term here will be more than error term here, so that different that means, some using this

model, what you will you will get SSE or suppose using this model you will get SSE

reduced model. Then what will happen this SSE reduce amount will be more than this



and  the  difference  is  contribution  of  these  to  the  error  and if  that  1  is  significantly

contributing then H 0 will be rejected.

So, what is being done here then first we calculate MSE what is mean square error. And

this will be nothing but your SSE divided by n minus k minus 1, and it will be using full

model that means, the first model. Now, you have use the second model reduced model

and what you are getting you see you are getting beta 2 cap x transpose x inverse x

transpose y here x 2 is there only.
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So, go to slide and see the slide. So, beta cap equal to x trans x transpose x inverse x

transpose y in the full model. Now, reduced model beta 2 cap will be x 2 transpose x 2

inverse x 2 stands for y. So, then we will get the SSR beta 2 that one will be beta 2 cap

transpose x 2 transpose y, from the previous model we have seen beta test. So, ultimately,

so the slides hello, so beta 2 is x 2 this and SSR beta 2 is this. And obviously here with p

minus r degrees of freedom, because you have not taken r number of curve this is this

one  total  p  r  is  taken  out.  And then  what  is  the  SSR of  beta  1  that  is  sum square

regression beta 1 given beta 2 this will be the full SSR minus the SSR explained by this

reduced model, so SSR beta minus SSR beta 2.

If this one is significant then we will reject H 0 that beta 1 equal to 0 will be rejected this

beta 1 equal to 0 will be rejected. So, you are creating f statistics here by saying that F 0

equal to SSR beta 1 given beta 2 divided by degrees of freedom and then your image. So,



what will be its degrees of freedom if this one or I can say mod of these I think this it

will  be always positives.  So,  if  this  is  greater  than  f  what  is  the  degree  of  freedom

numerator r degrees of freedom in denominator n minus k minus 1 or n minus p and if

we create a alpha single significance level, if this is the case that means, F 0 equal to this

equal to this greater than this reject H 0. That means, we have considered that big beta 1

equal to 0 that is not correct or I mean those variables are contributing.
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So,  I  will  just  brief  you  a  little  bit  more  here  related  to  the  individual  regression

coefficient. I have given you the hypothesis test, but the confidence interval is another

important concept.
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So, we have seen that that beta cap or you cannot beat a j cap minus beta j by variance

that  is  se  square C jj  this  follows t  distribution  with n minus k minus 1 degrees  of

freedom where in k p equal to k plus 1. So, you can write it n minus p also, there is your

freedom. And then I have already told you that this is plus t n minus k minus 1 into alpha

by 2 and this side will be minus t n minus k minus 1 alpha by 2. Then this quantity will

be in between this. Again under H 0 beta j equal to 0, so beta j cap by root over se square

C jj this will be a lying in between in between this t minus alpha by 2 n minus k minus 1

t alpha by 2 n minus k minus 1.

So, beta j cap now we want the interval for beta j, so we will not put zero this will not put

zero we will keep as it is under H 0 H 0 that is why test we have done. So, we will write

this minus beta j understood. We want interval for beta j, then this quantity will become

beta j cap minus tn minus k minus 1 alpha by 2 root over se square c jj. And this will be

beta j cap plus tn minus k minus 1 alpha by 2 and root over of se square c jj where c jj is

the j th diagonal element of the matrix x transpose x inverse.
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So, with this I will show you one example suppose beta is like this from some data you

got beta is like this. We will construct a 95 percent confidence interval for the parameter

beta 1 in example this is basically a example from a book. And now beta 1 is seven point

this and because and sigma square is this, this was also calculated earlier. And see that

the C 1 1 that is the x transpose x inverse that this is this. So, we find that that means, the

beta 1 cap minus the 2.16 into this one beta 1 cap minus t 0.025113 degrees of freedom.

So, 3 plus 1 – 4, 2 plus 1 - 3; that means, 16 minus 3 - the 13 degrees; that means, in

sample size is 16 here and this follows like this.

So, beta 1 cap you are writing like 7.621 to 9 t 0 point this is in 2.16. Sigma square is this

two sixty point this, C 11 from the x transpose x inverse that with that particular part into

10 to the power minus 3 less than equal to this less than equal to this value and finally,

you are getting this  type of confidence interval.  Now, see that  the in the confidence

interval there is no if this is positive to positive one sided there is no zero in between. So,

beta 1 is statistically significant means it is not 0. And from the hypothesis testing using t

value also, you will find that you will reject the null hypothesis that beta 1 equal to 0. So,

thank you very much and it is again taken from this Montgomery book, and also my

earlier lecture NPTEL lecture on Applied Multivariate Statistical Modeling.

Thank you, I hope that you have understood the concepts.


