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Hello, we will discuss now multiple linear regressions. So, the presentation will be like

this, this is a very basic lecture on multiple linear regressions.

(Refer Slide Time: 00:35)



So, as a result we will give you a conceptual model, when, what is a regression model

and what are the assumptions of regression model. And if possible I will give you the

equation for parameter estimation which will be discussed in next lecture also.
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So, see this one. Suppose you just think of a experiment, where you are interested to

characterize the process, or I can say process characterization is the issue. If you recall

my that earlier lectures, you know that I have given a process model with controllable



factors  and  controllable  factors,  and  with  y  the  output  input  controllable  x  may  be

uncontrollable level z and something like this

If you find out, suppose we want to characterize the process with reference to control

level factor, then y is a function of x. So, that is what you want to find out. Now that is

then y linear equation will be y beta 0 plus beta 1 x 1 plus epsilon. So, this is known as

simple linear regression. So, it will be a regression line like this, this side your x 1, this

side is y and this will be your beta 0, and the slope represent beta 1.

And this is your, this any point on this line is y that expected value of y given x equal to.

Let it be x i x 1 i this one. Let it be or i 1 x i 1, then you did x i 1 y 1 1 for the x 1

variable i is the i th term generation. So, what is the value of point here or any point on

this regression line, what it will depict? It will depict that y that the mean value of y with

respect to x is equal to x 1.

Now, if there are more than one factor, then your equation will be like this. Suppose there

are k numbers of factors. So, factors mean k number of. I am talking about controllable

factors here. We are not considering z at this moment, let it be. We can improve z here

also,  but  for  simplicity  I  am  not  doing,  because  our  aim  is  to  see  multiple  linear

regressions.  So,  then  this  one,  this  equation  represent  multiple  linear  regression.  In

multiple linear regression this one, suppose we have three factors A B and C.
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Let they are measured with continuous scale and we are saying x 1 x 2 x 3, and our

quality variable is y.

So, I can write linear regression like this; beta 0 plus beta 1 x 1 plus beta 2 x 2 plus beta

3 x 3 plus epsilon. So, this is also a miller, but here what happened, this x 1 x 2 x 3

independent, if there is some amount of dependency between these x. So, we can also

write something like this beta 0 plus beta 1 x 1 plus beta 2 x 2 plus beta 3 x 3 plus beta 1

2 x 1 x 2 plus beta 1 3 x 1 x 3 plus beta 2 3 x 2 x 3 plus epsilon. Here you see there are

parameters related to the factors or the variables, and this, basically this variable x which

are  independent  variables  I  Vs  and  y  is  known  as  dependent  variables,  dependent

variable and independent and all x are independent variables.

So, if we assume that the independent variable are correlated. So, then we are creating

some other coefficient, which takes care of their correlation part like this. So, you are

getting additional variable, variable with the existing variable. So, this is the, this is some

kind of. In first class I say that this is some kind of mean effects kind of things, and later

on we will see these are beta 1 beta 2 are the main effects kind of things. Beta 1 these are

interaction  effects  kind  of  thing.  So,  it  may. So,  happen  that  there  are  a  three  way

interaction then beta 1 2 3, x 1, x 2, x 3 plus epsilon.

So, and then if I think that there is the non-linear part quadratic effect is there. So, slowly

the non-linear part also can be added with this kind of regression equation for the time

being. We will be discussing with this kind of relation or with this ok.
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So, now let us see one example here. Suppose the viscosity of polymer a job importance,

whose  behavior  we  wanted  to  assess  and  we  also  want  to  characterize  these  with

reference to two process variables reaction; temperature x 1 and catalyst feed rate x 2.

And suppose we assume that they are linearly related. It may be show that they are not

linearly related, but we are assuming that linearly related, and another one is that. Let we

are assuming that they are independent x 1 x 2 are independent in nature, and there those

things can be tested once the experiment is done over and the data is collected, that can

be tested. Also suppose x 3 experiment is conducted, and you have 16 observations and

with different temperature, and different catalyst rate your viscosity values are like this.

So, you see that in y there are variability of y, y values are changing and this may be,

because of change in temperature and change in catalyst rate, and if they are linearly

related  then  we can  develop a  multiple  linear  regression.  So,  the,  what  is  the  usual

procedure.
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 Procedure is like this. Find out the interesting variables or the idle variable of interest. In

this  particular  example,  temperature  catalyst  feed  rate  and  viscosity.  Then  finally,

identify  the response variable.  It  is  the viscosity  explanatory variable  or independent

variable  some  time.  We  said  this  is  temperature  in  this,  and  our  characterization

relationship Y equal to function of X.
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So, then this model, linear model, multiple linear model will be like this beta 0, beta 1 x

1 plus, beta 2 x 2 plus epsilon. So, what is the job here? Our job is to estimate the beta



values. What is our job? Suppose we consider this equation,  our job is estimate beta

which is basically a vector beta 0, beta 1 and beta 2 with respect to this equation, with

respect to general k variable beta will be beta 0 beta 1 beta 2 like beta k k cross k plus 1

cross 1 vector.

So, these will be estimated. We will see later on that. We basically minimize the error, a

major this error will be minimized with respect to all the observations considered. So,

that is why we will consider sum square error and minimize sum square error. This will

give  you this  value,  using  ordinary  least  square  ordinary  least  square  ols  regression

ordinary least square method. So, there can be mle, mle maximum likelihood estimation,

but in this case multiple linear both will give you the same final formula.
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The assumptions are errors are normally distributed the variability of y is constant across

all level of X, which is had homoscedasticity observations are independent to each other,

and identically distributed. There is no or little existence of autocorrelation if you see the

linear  equation here.  So, you see y is  function of this,  and here importantly  these X

values. 

They are fixed values beta 0 beta 1 beta 2 they are constant values. So, this portion, this

portion is a fixed portion pattern portion so, but y is variable. So, that this variability part

the randomness part will be captured by error. So, other way in the first one, when you



are  saying  that  the  samples  drawn from normally  distributed  population  means  y  is

normal.

So, it  indicates  that  the error is also normal.  So, error is  normally distributed,  errors

normally distributed. So, if I say epsilon, this is normal distribution with mu and sigma

square.  Sigma square will  be variability  mu is  0.  So,  it  is  0 sigma square,  whatever

variability of y is there; that is going to error. 
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So,  with  reference  to  simple  linear  regression,  when  one  variable  pictorially  can  be

represented like, suppose this is x, this one is y, and this is my regression line. Suppose

this is the, this is my x 1 and this value is x 2, suppose this value is x i. Similarly x n

values are there

Then what happened this, as I told you that y is beta 0 plus beta 1 x plus epsilon. Here

this is the fixed part, this for any x value. When you find the value on this line, this is

basically this force, this part, this value is this. So, now, if I want to find out the expected

value of y, then this is the expected value of this equation beta 0 plus beta 1 x plus plus

epsilon. So, ultimately this portion for a fixed x value if it is a fixed value, this is beta 0

plus beta 1 x plus. What is the expected value of epsilon? It is 0.

So, that is why I say we said that, but this one gives you the expected value of y given x

equal to x 1 in this case, or x is equal to x i. So, now, the 0 that is why this 0 yg, this the



first part. Second part is that variability where it will go, it will be variability will be

represented like this. So, everywhere for a fixed value of x you can get different value of

y, and that variability is like this. So, x i this variability is like this x in

So, that is what this is basically variability sigma square, sigma square, sigma square,

sigma  square.  So,  we  are  saying,  then  the  first  assumption  is  errors  are  normally

distributed with mean mu equal to 0, and sigma square is the variance. This sigma square

is  the  variability  of  the  observed  y  variable.  Now another  second  one  is  there  that

common variance for all population; that is this one common variance. What do I mean?

We are mean common variance means, here first one is errors are normally distributed

second one is common variance.

So, for x 1 the y variability x 2 y variability, when x equal to x i y variability they will be

same. So, everywhere it will be sigma square; that is known as homoscedasticity. So, ys

variability across all values of x will be constant and that will be sigma square. Third one

is  that  whether  when  you  are  drawing  simple  sample  the  observations.  So,  every

observation they will be independent. So, you have i equal to how many observation 1 2

n observations,  x is there,  x 1, x 2 like this. Finally, y is  also there.  So, this  is  first

observation, second observation.

So, these observations will be independent. Suppose if I consider y 1 to yn. So, all those

y 1 is no affecting y 2. Another they are independent and they are coming from the same

population that is normal population. So, they, each of them are also normally distributed

with the corresponding population distribution. Here we will go for 1 population and we

withdraw  in  n  number  of  samples  or  a  sample  of  n  observations,  then  each  of  the

observations  will  be  coming  from  that  population  with  parameter  may  be  normal

parameter mu and sigma square, then there will be this one.

Apart  from  these,  what  will  happen,  because  if  this  y  is  no  independent,  every

observation then the errors will also become independent, and this ys variability as the

fixed portion is coming out that the variability portion is going to the error that is why

error is having, epsilon is having n 0 sigma square variability. And other one is there

should not be any autocorrelation; that means, independent. If they are independent there

is no autocorrelation means y 1 is not dependent on y 2 or y 2 not dependent on y 1, as



such y i is not dependent on maybe y i minus k may be at any lag, may be 1 lag or 2 lag,

but it they will not be autocorrect ok.
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So, these are the few assumptions, and then what I want to say, that next class we will

see elaborately, but suppose we say that y is beta 0 plus beta 1 x 1 plus beta 2 x 2. So,

like this, this, this beta kxk plus epsilon. So, this can be written like this x y equal to x

beta plus epsilon, and we will see that how, what is the x n, what is the beta when i equal



to 1 to n. So, how this x will be computed x will be derived beta will derive all those

things.

Usually what we will see that when i will equal to x will be n cross k, and beta will be

beta plus 1 into k and like this. And finally, using ols regression, we will compute beta

cap equal to x transpose x x transpose x inverse, if x transpose y where x is nothing, but

we  have  n  observations.  So,  x  0  x  1  like  this  xk.  So,  we  have  constant  term  for

everywhere 1 1 1 1 1, and this will be x 1 1 x 2 1. Suppose there is i x i 1 then n 1 and

like this x 1 k x 2 k then x i k and x n. Then suppose this is x i k and x n k.

So, then this is 1 0 to k. So, that and it is n. So, n cross k plus 1, this is the design, this is

known as design matrix and beta will be your beta 0, beta 1, 2 beta k. This will be k plus

1 cross 1 parameter to be estimated, and y is nothing, but that y 1 y 2 to y n. This is n

cross 1, this is the, this is what is basically the dependent variable observations.

So, here in the design matrix you are getting an interceptum where all 1 a every row

content 1, and the remaining this portion. This is basically the independent variable, but

these are the observered or fixed values for x 1, x 2 and x k at different observation

bringing, or the different settings, basically with reference to experiment. So, fine, please

keep  in  mind  multiple  linear  regression  is  a  very  important  topic  for  designing  of

experiment, because we will be later using the concept called response surface, response

surface way response surface.
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So, this response surface will give you the behavior of the y. For example, if I have two

factors. So, A or I can say x 1 or B if I say x 2. So, depending on when i you want to

change A and B with a purpose, then the y will be the, y values may create something

like this, this kind of surface.

Now, what happened for a particular value of A and B or particular value of x 1 and x 2.

You will be having the y value and if that y value is desirable one. So, you will run the

process at that x 1 and x 2 controllable values, or other I can say factors so.

Thank you next class we will see more details.


