Design and Analysis of Experiments
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Lecture — 20
Introduction to Multiple Linear Regression (MLR)
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Hello, we will discuss now multiple linear regressions. So, the presentation will be like

this, this is a very basic lecture on multiple linear regressions.
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So, as a result we will give you a conceptual model, when, what is a regression model
and what are the assumptions of regression model. And if possible I will give you the

equation for parameter estimation which will be discussed in next lecture also.
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So, see this one. Suppose you just think of a experiment, where you are interested to
characterize the process, or I can say process characterization is the issue. If you recall

my that earlier lectures, you know that I have given a process model with controllable



factors and controllable factors, and with y the output input controllable x may be

uncontrollable level z and something like this

If you find out, suppose we want to characterize the process with reference to control
level factor, then y is a function of x. So, that is what you want to find out. Now that is
then y linear equation will be y beta 0 plus beta 1 x 1 plus epsilon. So, this is known as
simple linear regression. So, it will be a regression line like this, this side your x 1, this

side is y and this will be your beta 0, and the slope represent beta 1.

And this is your, this any point on this line is y that expected value of y given x equal to.
Letitbe xix 11thisone. Letitbeoril xil,thenyoudidxilyl11 forthe x 1
variable 1 is the i th term generation. So, what is the value of point here or any point on
this regression line, what it will depict? It will depict that y that the mean value of y with

respect to x is equal to x 1.

Now, if there are more than one factor, then your equation will be like this. Suppose there
are k numbers of factors. So, factors mean k number of. I am talking about controllable
factors here. We are not considering z at this moment, let it be. We can improve z here
also, but for simplicity I am not doing, because our aim is to see multiple linear
regressions. So, then this one, this equation represent multiple linear regression. In

multiple linear regression this one, suppose we have three factors A B and C.
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Let they are measured with continuous scale and we are saying x 1 x 2 x 3, and our

quality variable is y.

So, I can write linear regression like this; beta 0 plus beta 1 x 1 plus beta 2 x 2 plus beta
3 x 3 plus epsilon. So, this is also a miller, but here what happened, this x 1 x 2 x 3
independent, if there is some amount of dependency between these x. So, we can also
write something like this beta 0 plus beta 1 x 1 plus beta 2 x 2 plus beta 3 x 3 plus beta 1
2x1x2plusbetal 3 x1x3plusbeta23x2x3 plus epsilon. Here you see there are
parameters related to the factors or the variables, and this, basically this variable x which
are independent variables I Vs and y is known as dependent variables, dependent

variable and independent and all x are independent variables.

So, if we assume that the independent variable are correlated. So, then we are creating
some other coefficient, which takes care of their correlation part like this. So, you are
getting additional variable, variable with the existing variable. So, this is the, this is some
kind of. In first class I say that this is some kind of mean effects kind of things, and later
on we will see these are beta 1 beta 2 are the main effects kind of things. Beta 1 these are
interaction effects kind of thing. So, it may. So, happen that there are a three way

interaction then beta 1 2 3, x 1, x 2, x 3 plus epsilon.

So, and then if I think that there is the non-linear part quadratic effect is there. So, slowly
the non-linear part also can be added with this kind of regression equation for the time

being. We will be discussing with this kind of relation or with this ok.
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So, now let us see one example here. Suppose the viscosity of polymer a job importance,
whose behavior we wanted to assess and we also want to characterize these with

reference to two process variables reaction; temperature x 1 and catalyst feed rate x 2.

And suppose we assume that they are linearly related. It may be show that they are not
linearly related, but we are assuming that linearly related, and another one is that. Let we
are assuming that they are independent x 1 x 2 are independent in nature, and there those
things can be tested once the experiment is done over and the data is collected, that can
be tested. Also suppose x 3 experiment is conducted, and you have 16 observations and

with different temperature, and different catalyst rate your viscosity values are like this.

So, you see that in y there are variability of y, y values are changing and this may be,
because of change in temperature and change in catalyst rate, and if they are linearly
related then we can develop a multiple linear regression. So, the, what is the usual

procedure.
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Procedure is like this. Find out the interesting variables or the idle variable of interest. In
this particular example, temperature catalyst feed rate and viscosity. Then finally,
identify the response variable. It is the viscosity explanatory variable or independent
variable some time. We said this is temperature in this, and our characterization

relationship Y equal to function of X.
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So, then this model, linear model, multiple linear model will be like this beta 0, beta 1 x

1 plus, beta 2 x 2 plus epsilon. So, what is the job here? Our job is to estimate the beta



values. What is our job? Suppose we consider this equation, our job is estimate beta
which is basically a vector beta 0, beta 1 and beta 2 with respect to this equation, with
respect to general k variable beta will be beta 0 beta 1 beta 2 like beta k k cross k plus 1

cross 1 vector.

So, these will be estimated. We will see later on that. We basically minimize the error, a
major this error will be minimized with respect to all the observations considered. So,
that is why we will consider sum square error and minimize sum square error. This will
give you this value, using ordinary least square ordinary least square ols regression
ordinary least square method. So, there can be mle, mle maximum likelihood estimation,

but in this case multiple linear both will give you the same final formula.
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The assumptions are errors are normally distributed the variability of y is constant across
all level of X, which is had homoscedasticity observations are independent to each other,
and identically distributed. There is no or little existence of autocorrelation if you see the
linear equation here. So, you see y is function of this, and here importantly these X

values.

They are fixed values beta 0 beta 1 beta 2 they are constant values. So, this portion, this
portion is a fixed portion pattern portion so, but y is variable. So, that this variability part

the randomness part will be captured by error. So, other way in the first one, when you



are saying that the samples drawn from normally distributed population means y is

normal.

So, it indicates that the error is also normal. So, error is normally distributed, errors
normally distributed. So, if I say epsilon, this is normal distribution with mu and sigma
square. Sigma square will be variability mu is 0. So, it is 0 sigma square, whatever

variability of y is there; that is going to error.
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So, with reference to simple linear regression, when one variable pictorially can be
represented like, suppose this is x, this one is y, and this is my regression line. Suppose
this is the, this is my x 1 and this value is x 2, suppose this value is x i. Similarly x n

values are there

Then what happened this, as I told you that y is beta 0 plus beta 1 x plus epsilon. Here
this is the fixed part, this for any x value. When you find the value on this line, this is
basically this force, this part, this value is this. So, now, if I want to find out the expected
value of y, then this is the expected value of this equation beta 0 plus beta 1 x plus plus
epsilon. So, ultimately this portion for a fixed x value if it is a fixed value, this is beta 0

plus beta 1 x plus. What is the expected value of epsilon? It is 0.

So, that is why I say we said that, but this one gives you the expected value of y given x

equal to x 1 in this case, or X is equal to x i. So, now, the 0 that is why this 0 yg, this the



first part. Second part is that variability where it will go, it will be variability will be
represented like this. So, everywhere for a fixed value of x you can get different value of

y, and that variability is like this. So, x 1 this variability is like this x in

So, that is what this is basically variability sigma square, sigma square, sigma square,
sigma square. So, we are saying, then the first assumption is errors are normally
distributed with mean mu equal to 0, and sigma square is the variance. This sigma square
is the variability of the observed y variable. Now another second one is there that
common variance for all population; that is this one common variance. What do I mean?
We are mean common variance means, here first one is errors are normally distributed

second one 1S common variance.

So, for x 1 the y variability x 2 y variability, when x equal to x 1 y variability they will be
same. So, everywhere it will be sigma square; that is known as homoscedasticity. So, ys
variability across all values of x will be constant and that will be sigma square. Third one
is that whether when you are drawing simple sample the observations. So, every
observation they will be independent. So, you have i1 equal to how many observation 1 2
n observations, x is there, x 1, x 2 like this. Finally, y is also there. So, this is first

observation, second observation.

So, these observations will be independent. Suppose if I consider y 1 to yn. So, all those
y 1 is no affecting y 2. Another they are independent and they are coming from the same
population that is normal population. So, they, each of them are also normally distributed
with the corresponding population distribution. Here we will go for 1 population and we
withdraw in n number of samples or a sample of n observations, then each of the
observations will be coming from that population with parameter may be normal

parameter mu and sigma square, then there will be this one.

Apart from these, what will happen, because if this y is no independent, every
observation then the errors will also become independent, and this ys variability as the
fixed portion is coming out that the variability portion is going to the error that is why
error is having, epsilon is having n 0 sigma square variability. And other one is there
should not be any autocorrelation; that means, independent. If they are independent there

is no autocorrelation means y 1 is not dependent on 'y 2 or y 2 not dependent on y 1, as



such y 1 is not dependent on maybe y i minus k may be at any lag, may be 1 lag or 2 lag,

but it they will not be autocorrect ok.
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So, these are the few assumptions, and then what I want to say, that next class we will
see elaborately, but suppose we say that y is beta 0 plus beta 1 x 1 plus beta 2 x 2. So,
like this, this, this beta kxk plus epsilon. So, this can be written like this x y equal to x

beta plus epsilon, and we will see that how, what is the x n, what is the beta when i1 equal



to 1 to n. So, how this x will be computed x will be derived beta will derive all those

things.

Usually what we will see that when i will equal to x will be n cross k, and beta will be
beta plus 1 into k and like this. And finally, using ols regression, we will compute beta
cap equal to X transpose X X transpose x inverse, if x transpose y where X is nothing, but
we have n observations. So, x 0 x 1 like this xk. So, we have constant term for
everywhere 1 1 1 1 1, and this will be x 1 1 x 2 1. Suppose there isix i 1 then n 1 and
like this x 1 k x 2 k then x 1 k and x n. Then suppose this is x 1 k and x n k.

So, then this is 1 0 to k. So, that and it is n. So, n cross k plus 1, this is the design, this is
known as design matrix and beta will be your beta 0, beta 1, 2 beta k. This will be k plus
1 cross 1 parameter to be estimated, and y is nothing, but that y 1 y 2 to y n. This is n

cross 1, this is the, this is what is basically the dependent variable observations.

So, here in the design matrix you are getting an interceptum where all 1 a every row
content 1, and the remaining this portion. This is basically the independent variable, but
these are the observered or fixed values for x 1, x 2 and x k at different observation
bringing, or the different settings, basically with reference to experiment. So, fine, please
keep in mind multiple linear regression is a very important topic for designing of
experiment, because we will be later using the concept called response surface, response

surface way response surface.
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So, this response surface will give you the behavior of the y. For example, if [ have two
factors. So, A or I can say x 1 or B if I say x 2. So, depending on when i you want to
change A and B with a purpose, then the y will be the, y values may create something

like this, this kind of surface.

Now, what happened for a particular value of A and B or particular value of x 1 and x 2.
You will be having the y value and if that y value is desirable one. So, you will run the

process at that x 1 and x 2 controllable values, or other I can say factors so.

Thank you next class we will see more details.



