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Minimal Spanning Tree

Right, so today we go ahead with our discussion on spanning trees and there after we shall see

the how we can find out minimal spanning trees in a given problem, right? And we can actually

solve some problems also, right? So let us go ahead and know this particular discussion on the

minimal spanning trees. 
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So the minimal spanning tress as you can see the minimal spanning first of all the concept of

spanning tree, so what I discussed if you look at this particular diagram which I was showing on

previous day that there are 5 vertices and we had to connect minimally to those 5 vertices these

are possible road connections.

The question is that how to make a minimal connection in this particular road network on which

road network to build. So obviously all the 5 cities should be connected, so if I draw a tree out of

these 5 cities then that particular tree is called a spanning tree, right? So we have seen a concept

of spanning tree in our previous class now we continue from there. 
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You see like we have a spanning tree for a connected graph suppose we start with a disconnected

graph, then what happens? You see connected graph has a spanning tree.

So what a disconnected graph will have? Here is an example of a disconnected graph you see all

3 are together makes a graph G, so they are not connected see from this vertex can you reach

here? Answer is no, from this vertex can you reach here? Answer is no. So there are components,

how many components let us say k components so here 3 components so k equal to 3. Now if I

take this as a connected graph we can draw a spanning tree, similarly if I take this as a connected

graph we can also draw another spanning tree and this one is another connected graph that has a

spanning tree.

So for the entire graph we do not have a spanning tree we have a what is known as a spanning

forest,  alright?  So  now  can  you  answer  this  questions  can  there  be  a  spanning  tree  for  a

disconnected  graph?  Answer  is  no,  we  cannot  have,  right?  For  a  disconnected  graph  has

components and that kind of graph will not have a spanning tree but it will have a spanning

forest and each component will have a spanning tree that is what happens in a disconnected

graph.

The second question we ask here does every connected graph have a spanning tree? If a graph is

connected can there be a spanning tree? You see in the worst case the graph could be a tree itself.

So if the graph is a tree, then the entire graph is a spanning tree of itself (())(3:45) because that



graph itself is a minimal connected so a tree can also have a spanning tree but that is nothing but

the graph itself so the graph itself will be the spanning tree.

So then our spanning trees unique in each graph? That is also very interesting question that in a

graph will there be a only one spanning tree or there will be multiple spanning trees? 
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Let us understand this question, so how many different spanning trees the following graph can

contain, right? So look at this graph and try to write down all the possible spanning tree that you

can think of. One spanning tree is shown that is e2, e3, e4, e7 let us draw it and let us see how

many different spanning trees one can find out.
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So supposing we have this, then we have this, then we have this, then we have this and then have

this, then we have this and then we have this. So this is our graph this graph is e1, e2, e3, e4, e5,

e6 and e7 so this is our graph. Now question is how many different spanning trees can you think

of, right? So one spanning tree you can think of is say e1, e3, e5 and e6, right? This is also a

spanning tree so there are 1, 2, 3, 4, 5 vertices so there will be 4 edges that should be a spanning

tree.

So you see one spanning tree s1 could be 4 edges it is a set of edges so e1, e3, e5, e6. Now, can

you think of another spanning tree s2 as e1, e2 if you take e1, e2 then you cannot take e3 because

that will make a circuit, right? e1, e2, e4, e7, can you take another spanning tree as e1, e2 then e4

and then e6 e1, e2, e4 and e6, right? So you know you can think of so many of them why not e2,

e3, e4 and e6, right? So you can have like this several spanning trees but what do they signify.

You see what is spanning tree? A spanning tree connects so if this is a 4 you know 1, 2, 3, 4, 5

cities and these are the possible road connections the spanning signifies the minimal connection.

So these are the choices (())(7:29) or these are the potential solutions if the problem is that how

do  I  minimally  connect  5  cities  so  that  you  know  optimally  we  find  what  is  the  possible

connection  of  these  5  cities  that  will  optimally  connect  these  5  cities  minimally.  Then  our

candidate solutions are the spanning trees and one of the spanning tree will be our answer, is or

not? That is what they signify.
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So you see this  question is directly  related to the problem that we call  sometimes the linear

programming problem and this linear programming problems let us take a very simple problem

say transportation problem. What is a transportation problem? In a transportation problem there

are some supply nodes like 1 and 2 you can see there are 2 supply nodes, there are some demand

nodes or demand points so 3 and 4 are demand points and at each supply point there is some

availability a1 and a2 and each demand there is d1 and d2 they are the demands.

So possible paths you see these are like possible paths 1, 2, 3, 4 these are the 4 possible paths

through which supply can be made and let us say the cost per unit is c13, c14, c23 and c24. So

question is how much should I supply through 1, 3 through 1, 4 through 2, 3 or through 2, 4 if

you have solve linear programming problems usually what we do you know we try to find a

basic fusible solution and invariably the basic fusible solutions that we find we do not cover all

the possible options that we have.

It could be found that out of all the choices only a few choices or some of the choices will be

required the remaining choices would not be required, how many such choices? You will be very

interest very very much you know this you know amazed to find that the linear programming

process essentially puts the excess variable to zeros, right? So by putting excess variables to

zeros if you solve a set of if there are m variables and there are n equations where m is greater



than n and you put the remaining variables to zeros and additionally we have an overwhelming

condition that is total availability equal to total demand, then how many will you able to solve?

You will be able to solve only n minus 1 and if you have n minus solutions n minus 1 solutions

out of n what this n minus 1 solutions would actually mean? They mean it is a spanning tree, so

basically  the  solution  is  nothing  but  a  set  of  spanning  trees,  right?  Which  spanning  tree

combinations out of these say there are 4 you take all 4 you get a circuit you do not get a tree. So

to get a spanning tree you have to choose any 3, which 3? Which is the combination which gives

the least cost, right? 

That  is  the  spanning  tree  we  have  to  actually  choose.  So  each  spanning  tree  of  the  graph

representing the transportation problem is  a  candidate  solution or a basic  solution in  the LP

language,  right?  One  spanning  tree  1-3,  2-3,  2-4  is  shown  in  red.  So  basically  a  linear

programming problem is nothing but finding the difference spanning trees evaluating them and

see which one is giving us the best possible solution.

Although  we  are  not  going  to  solve  linear  programming  problems  here,  but  it  must  be

remembered that any network problems we can actually solve a linear programming problem by

what is known as the network simplex method but today we shall discuss something else, right? 
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What is that something else? Before that let us go ahead little bit about the chords so all the

remaining edges of a graph G other than the spanning tree edges they are called chords, ties or

links, right? 

So here if e2, e3, e4, e7 is a spanning tree, then e1, e5 and e6 are the 3 chords and look here these

chords give exactly one circuit, exactly one circuit with the spanning tree edges, right? So you

take e1 then we get a circuit here, we get e5 we get another circuit here, we take e6 we get the

another circuit here, right? So this is what and what happens to another spanning tree if you have

another spanning tree then we have a different set of circuits and all these circuits are called the

fundamental circuits.

So e1 if you take with e2, e3 it gives one circuit that is called a fundamental circuit 1. With e5 it

gives  another  fundamental  circuit,  with  e6  it  gives  a  third  circuit  which  is  called  also  a

fundamental  circuit.  So  we  get  several  fundamental  circuits  in  fact  the  number  of  such

fundamental circuits will be nothing but the number of chords we will discuss more about these

later I will skip this for the time being and we directly come to what is known as how to compute

a minimal spanning tree, look at this particular problem.
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So consider this graph it has weights associated with edges what do they signify? Supposing

there are 6 cities and these 6 cities are connected in a certain manner and these are the possible

road connections, right? And there is a figure given the weight given what is that weight? That

weight is nothing but the distance or the length of the possible road connection, right? Now if we

have to minimally connect them, then how do we go about? That is a essential question, right? 

So what is  our essential  question? The essential  question is how do we go about minimally

connect these 6 cities c1, c2, c3, c4, c5 and c6 so that we get a minimal connection between these

particular edges. So if you want to solve these problem it may take a little time but you know that

is an important time that we really put let us draw this graph here, right? 
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So this is c1, this is c2, then this is c3, this is c5, this is c4, this is c6 so these are the 6 this thing,

now these are the connections this is 9, this is 4, then c2 to c4, c2 to c3 that is 5, this is 6, this is

7, this one is 6, this one is 8 and this large one it is 14, then c5 to c6 it is 6, c5 to c4 9, c4 to c6 it

is 7 and finally c1 to c6 it is 12, right? So we have drawn this particular graph hope everything is

covered, right? So once we have drawn this particular graph, now the question is how do I go

about to find minimal connection.

So basically this one is nothing but to find out a minimal spanning tree or in other words an

MST. So how to  I  find out  a  minimal  spanning tree?  There  are  2 methods,  what  are  the  2

methods? One is called Kruskal’s algorithm and the other one is called Prim’s algorithm. So

there are 2 methods one is called Kruskal’s algorithm and the other is called Prim’s algorithm by

which we can find out the minimal spanning tree.

Now why do we need minimal spanning tree? Because these are the possible road connections

between these 6 cities and we have to find out which are the connections that we shall go for so

that you know the minimally these 6 cities can be connected. This problem is finding nothing but

the  spanning  tree  which  is  having  the  minimum  total  weight  and  that  is  called  a  minimal

spanning tree. 
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So you see this is a slide that I was talking of just now that minimal connection between the

nodes can be found out in a graph by finding minimal spanning tree of the graph and there are 2

algorithms Kruskal’s and Prim’s.

The Kruskal’s algorithm is an edge based algorithm it realize on finding next lowest edge edges

that  do  not  make  circuits  with  previously  selected  ones  and  implementation  is  difficult  is

computers.  Prim’s  algorithm  on  the  other  hand  is  a  node  based  method  and  it  realize  on

connecting a node with its nearest neighbor and implementation is easier. So there are 2 methods

one is the Kruskal’s which is edge based but idea is to finding that no circuit is formed and the

other one is node based there the advantage is you do not have to really find whether it is making

a circuit or not.

Please remember when you do computer implementation if you have to find whether it makes a

circuit or not that is rather difficult process, right? So it is more involved in a computer while we

are doing manually we can just look at and we see that it is forming but if you want to implement

this on a computer you must have algorithms that can actually read it through a matrix, right? So

those matrix things I am not talking right now but we shall give some hints later on.



(Refer Slide Time: 20:19)

So what exactly we do here is in the Kruskal’s algorithm you can see the method we are sorting

all the edges of the graphs with n vertices as per there ascending weights and then start with the

edge of minimum weight. Consider another edge of next higher weight edges and ensure that the

edge  on  consideration  do  not  make  any  circuit  with  the  already  selected  ones  that  is  very

important. you see it is to be not with the last selected edge that is the mistake people make, the

idea here is you have already selected a few edges see that the next stage do not make circuit

with the already selected ones and continue till how many edges n minus 1 edges are selected,

right? When n minus 1 edges are selected you get a minimal spanning tree. So now let us look at

how Kruskal’s method can be applied for this particular problem, right? 
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So this is the problem that we are solving that and we are trying to use what is known as the

Kruskal’s method. So if you sort all the edges as per the ascending weight which one will come

first? You see c1, c2 because look at this entire graph the minimum possible edge weight is 4

only, right? 

So let us sort a few c1-c2: 4, then c2-c3: 5, then c1-c3: 6, then c3-c4: 6, then c5-c6: 6, then c3-c5:

7, then c4-c6: 7 etcetera etcetera, right? So we have chosen some 7 hopefully it is okay because

how many we have to choose because here n equal to 6, so n minus 1 equal to 5 so 5 edges to be

chosen, right? We have to choose only 5 edges because total number of vertices are 6 and out of

6 you know we can have only 5 to form what is known as the minimal spanning tree.

So what Kruskal’s method is telling that first of all select a particular edge say let us say we

chose first c1-c2: 4 already chosen so let us draw it here on a particular curve that is so c1-c2: 4

already chosen we can also mention it here that is this is already chosen, right? Next one we look

at the list so next one is c2-c3 that is 5 should we choose, does it make any circuit with the

already selected one? Answer is no, it does not make any circuit with the already chosen one so

we can choose c2-c3: 5 we can choose and we can put it here also c2-c3: 5 so two are chosen

only 3 more are to be chosen.

So we have got up to this. Now question is that which should be next? Look at the list now there

are 3 choices before us we can choose c1-c3, we can choose c3-c4, we can choose c5-c6, but can



we choose c1-c3? Look here if I choose c1-c3 it makes a circuit but Kruskal’s algorithm says that

a selection should not be a particular edge which is going to make a circuit with the already

selected ones. So we have chosen these two so that means this third one cannot be chosen, right?

So c1-c3 cannot be chosen so it is out.

So question is we can now choose either c3-c4 or c5-c6 you see I would like to choose c5-c6

because you know you may be thinking that we have to go from one corner and keep on going,

so it is not required we can choose c5-c6 also there is no problem, right? So let us choose now

c5-c6 so c5-c6 is 6 so we choose it so let us draw in this diagram so this is c5 and c6, right? So

c5-c6: 6 is also chosen so we have chosen 3 and there is no circuit.

Now what is the fourth one? The fourth choice should be that again we have chosen this, we

have chosen this, we have chosen this, we cannot choose this. So next again it will c3-c4 we can

consider now because it is the next one coming so look c3-c4, does it make any circuit with the

already chosen one? Answer is no, it does not make any circuit with the already chosen one so

we can consider c3-c4: 6. So let us choose c3-c4 also that is 6, so c3-c4 is chosen, so four are

chosen now we come to this, can we choose c3-c5 or c4-c6 both are there in fact now since there

is a choice you know they do not make circuit so we can choose either we can choose either.

So suppose we choose c3-c5: 7 then we can have this one c3-c5: 7 so if we choose like this then

we have this particular graph and look here we have got what is known as a spanning tree, can

you see that? We have a spanning tree because we have already got 5 edges and all the 6 cities

are connected minimally and what is the total distance? 4 plus 5 9, 15, 22 and 28 so total road

length 28, so this is what is known as the Kruskal’s method, right? 
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So in Kruskal’s method 28 and if you really look at here, then you can see that depending on

whether you choose c3-c5 or c4-c6 we get the two alternate solutions, right? 

So that is a Kruskal’s method for solving minimal spanning tree problems. 
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Now look at the second method which is more popular for computer based systems that is called

a Prim’s algorithm. In Prim’s algorithm it is a node based method so what we do we first start

with a node let us say c1, so now in c1 we have to see what it is nearest neighbor, so let us

directly look here let us do here in this case (())(29:40) so this is the Prim’s algorithm.

So like Kruskal’s algorithm let us look at what is known as the Prim’s algorithm also. So what

happens in Prim’s algorithm let us start with a particular node c1, right? So here the process is

slightly different that is we start with a particular node c1 suppose we can start with any other

node also but let us say we start with a particular node c1. Now the question is that which one

should be its nearest neighbor what is the nearest city to c1? You see choice is c2 4, c3 6, c5 9, c6

12 direct edge connections there 4 edge connection, which one is the lowest? The lowest is c2.

So that means we have to connect c1 to c2 because that is the lowest edge connection nearest

neighbor. So now consider c1 and c2 as 1 sub graph and what is the nearest neighbor to these 2

together? You see what has happened we have now you know differentiated or divided the entire

space into 2, one is c1-c2 another is c3-c4-c5 so you see you have to now therefore look at all

possible  connections  between  c1-c3,  c1-c4,  c1-c5  c2-c3,  c2-c4,  c2-c5  and  look  at  these  2

connections and see which one is the lowest. So if you see c1-c2 from c2 the lowest is 5 because

from c2 you can go to c1 is already taken c3, c4 and c6 5 is lowest.

From c1 6, 9 and 12 so ultimately lowest is 5. So at this point we connect c3 and we get 5, now

take the entire thing c1, c2, c3 all together and look at what its nearest neighbor. So one side is



c1, c2, c3 these entire portion what is the nearest neighbor out of these c4, c5 at this point, right?

So there is which one so you see from c1 12, 9, from c2 8, 14 and from c3 7 and 6. So we get c4

which is 6 so there is a fourth connection now if you to connect c5 there are two choices, right?

So we have connected c1, c2 and c3 to c4 then we have this either this 7 or see this 7 because

now c1, c2, c3, c4 this is what we have now we have to see that the lowest connection that we

have is one of these two sevens, right? 

So maybe anyone you can take so maybe we take this one and we go to c5 that is 7. So if I know

take these entire c1, c2, c3, c4, c5 the nearest connection to this is c6 and then we get 6. So you

see look we have got the same graph then earlier the only difference is that approach is different

the way we calculate is also very different. 
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So look at this slide so start at node say c1 connect its nearest neighbor c2 consider c1, c2 as one

sub graph connected to its nearest neighbor, is it c3? Yes then take c1, c2, c3 as a sub graph

connected to c4, why? Because for this c4 is the nearest neighbor then take c1, c2, c3, c4 then

should we take c5 or c6? Answer is both because both are same distance, right? Where should be

the last node either? Either c5 or c6 depending on that, so all vertices chosen? Yes, stop.
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So these are the same answers we get by the Prim’s algorithm also, is it alright? So this is how

we actually can calculate and you can try out different other problems. 
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For example you can try this problem you know where we have 1, 2, 3, 4, 6 nodes and there are

so many connections so can you find what is known as the minimal spanning tree for this and

additionally can you also find maximal spanning tree, right? So anyway I leave it here maybe we

this question you take it up later, so thank you very much.  


