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Good morning. Welcome to the 36th lecture on Economics, Management, and Entrepreneurship.

In  our  last  lecture,  we  had  covered  multiple  regression  method  as  a  forecasting  technique.

Regression  methods  are  usually  applicable  to  medium-term  forecasting.  For  short-term

forecasting normally we use time series forecasting. In our last lecture we had introduced the

concept of time series and we had said that a time series had got different components.

And then we had said that there are principally 3 methods: 1 the moving average method, 2 the

exponential smoothing method, and 3, the Box-Jenkins method which are also known as ARMA,

ARIMA methods.  Let  us  once  again  look at  the  components  of  time  series  and  the  first  2

methods to moving average and exponential smoothing method.

(Refer Slide Time: 01:56)

First, the components of time series and we had said that there are principally 4 components

average,  trend,  seasonality,  and  random  noise.  There  is  also  a  5th  component  called

autocorrelation with the help of which one can identify whether there is trend or seasonality and



also in its own right autocorrelation is a component with the help of which time series can be

modeled and can be forecast.

(Refer Slide Time: 02:35)

And I had told you that suppose a time series does not contain a trend or a seasonality, but

contains only an average and certain fluctuations around the average, then this is equivalent to

saying that Xt =. Xt the time series = a constant a + a noise term epsilon t.

(Refer Slide Time: 02:59)

That is the first diagram the noisy time series. The second diagram is noisy time series with a

trend it means that we have in the second time series we have the time series Xt expressed as a

constant a + a long term trend t and its coefficient b and + there is a random noise epsilon t. Thus



this is the equation of a + bt and on superimposed on that is random noise therefore the actual

values fluctuate around this.

(Refer Slide Time: 04:00)

Then we have time series with seasonality and noise. So whenever there is a seasonality we will

see that there is a regularity in the fluctuation it has got a constant amplitude, almost a constant

amplitude and the periodicity is constant and now in this case the average is there. There is a

seasonality  around the  average  and there  is  certain  random noise  whereas  here  we have  an

average and a long term trend and on that there is a regular seasonal pattern.

And  of  course  there  is  certain  amount  of  noise  around  it  and  there  can  be  different  other

variations of these components.

(Refer Slide Time: 04:50)



Then we had also introduced the concept of correlation basically correlation is a extent of linear

relationship between 2 variables x and y.

(Refer Slide Time: 05:03)

This is a case of correlation coefficient equal 1. This is a negative - 1 and these are close to 1

positive, but not 1 it is 0.85 and this is - 0.88 negative, but not exactly lying on a line.

(Refer Slide Time: 05:23)



Autocorrelation is basically defined in terms of only 1-time series, but when it is correlated with

its own past values. So if we take autocorrelation between Yt and Y t - 1 we then define Yt - 1 as

a 1 period lag time series so 10 and 10, 15 and 15, 20 and 20 etc. A 2 period lag time series

means 10 here, 15 here, 20 here, 12 here, etc and then we find out how Yt is correlated with its 1

lag that is autocorrelation and correspondingly we can find out autocorrelation coefficient.

(Refer Slide Time: 06:12)

Next we had introduced the concept of time series smoothing. Basically whenever there is a time

series Xt having certain old values, then we say a smoothed value is a weighted average of the

past values. The weight is adding up to 1 and each weight > 0.

(Refer Slide Time: 06:37)



This we had used in certain examples. Suppose that we have 5 values of Xt and if the constant

weight Wt is given as 0.2 to each one, 0.2 is > 0 and when we add them 0.2 * 5 it becomes 1

therefore average of Xt calculated that the 10.5 = 0.2 * 5 + 0.2 * 12 etc = 11. Whereas if we

change the weights still maintaining that some of the weights = 1, then the same quantity using

the same values, the weights are different now 0.5 * 5 etc. The value of X5 is 10.5.

(Refer Slide Time: 07:30)

And we say that if time series contains an average and a noise superimposed on this, then the

expected  value of  the  time series  at  any time  is  nothing but  the average  itself  meaning the

smoothed value of this. So we calculated the smoothed value of X at time t and then project that

as the forecast in the next time period. So we say that the forecast at time t + 1 when we are here,



we say that the forecast of the time series at this point will be the average value calculated at this

point. So, when we are here, for example, we shall calculate the average value of the time series

at this point and then we say that that is the forecast in the next time period.

(Refer Slide Time: 08:22)

The moving-average period is basically that we take only a constant moving-average period.

Suppose we decide to take only the most recent N data points that is the moving average period.

We may have many more data points, but we will take only the most recent N data points. Then

the average value will be calculated in this manner. The average of that.

(Refer Slide Time: 08:50)



 And when the next data point is available, we discard the old value and add the new value and

thereby we recalculate the value of X at time t + 1.

(Refer Slide Time: 09:07)

This was the example which we had considered in our last example before we ended the class.

Suppose that we have the time series values for 8 data point, 8 time points. The values are 6, 8,

10, 3, 11, 10, 6, and 8 and suppose that we take the moving average period as 3 and calculate

from here it means that when we are at time period 3, we shall average these 3 values and take

that as the forecast for the next time period.

So, average value of this is 8. 6 + 8 + 10 24/3 is 8. 8 is taken as the forecast for the next time

period and when we come to period 4, we shall describe this one. We shall instead include this in

our consideration. So we will consider the values 8, 10, and 3 that makes it 11 + 10 21/3 is 7. So

that is the moving average value calculated at time point 4. This is taken as the forecast for the

next time period. Similarly we go to the next time period 5 we will consider again the 3 data

points (()) (10:41) data points 11, 3, and 10 that is 24/3 is 8.

So you take this as the forecast for the next time period. Like this we continue. Now we can

calculate the forecast error which is defined as the value of the time series data time t and its

forecast made. For example, at period 4 we have made a forecast of 8, but the actual value is 3



therefore the forecast error is – 5. At time point 5 the forecast error is 11 - 7 is 4. Time point 6,

the error is 10 - 8 is 2 and so on so forth. These are the forecast error.

(Refer Slide Time: 11:39)

Now suppose that the time series data is all the time increasing there is an ideal case where there

is no noise. It contains only an average and a trend component. You can see at time point 1, the

value of x is 2. Then next period it is 5, the increment is 3. Next period it is 8, increment is still 3,

11, 14, 17, 20, and 23. So if the time series data shows a consistently rising trend, whether single

moving average will be a good method we see.

Once again that we take the moving average period as 3 then the moving average value at time

point 3 is 2 + 5 + 8 15/3 it is 5 and that is taken as the forecast for the period 5. Next it is 5 + 8 +

11/3 and that is 8. Likewise, we see that the single moving average value consistently lags means

what was 5 is reflected in the next time period. What was 8 is reflected in the next time period.

So there is always a lag of 1-time period before it can actually reflect the current value.

So we can say that if N = 3 that is the moving average period N = 3 the lag is 1. This 5 comes

here after 1-time period, 8 comes here after 1-time period. So in general this lag is = N - 1/2. N in

this case is 3 - 1 is 2, 2/2 is 1, so 1-time period lag and we see that the error between Xt and Ft is

a constant 6. Now we can correct for this error to know or to be able to make a forecast very



accurately. If you know or if you can make out what this error is we can add to X bar t to get this

amount.

(Refer Slide Time: 14:14)

This is shown in this figure assuming that the value of X rises consistently in a linear fashion.

Suppose that this is Xt rising in this fashion. Once we make a single moving average, once we

smooth it once we know that there is a lag of sometime, which is N - 1/2. After the N - 1/2 this

value is deflected as the smoothed value. We have already seen when N = 3 the value was 3 - 1/2

after 1-time period this value was obtained as the average value.

So this difference, the length of this line will be equal to N - 1/2. Now suppose that X bar t is

taken it  is smoothed once again we call  it  double smoothing and this is a single smoothing.

Single smoothing of Xt is  X bar  t.  Double smoothing of Xt is  equivalent  to smoothing the

smoothed value of Xt meaning smoothing this. Now, if Xt rises this way, X bar t also rises in this

same fashion, but it is a lagged value, lagged time series.

As we have seen in this diagram. This was 2, 5, 8, etc and this was 5, 8, 11, 14, 16 etc 1-time

period lag, but it was also rising. Now if this value is once again smoothed, then this will also be

rising, but it will once again show a lag and if the time period moving average period is same for

the first smoothing and the second smoothing, then this distance would also be the same which is

N - 1/2 and this difference is X bar t - X double bar t.



This is the value of X bar t at time t and this is the value of X double bar t at this time and that is

the difference.  If  we know the vertical  distance X bar t  -  X double bar t  and we know the

horizontal distance which is n - 1/2 then we can find the trend which is this/this. Therefore, we

can find out at that means suppose that we are interested to find out this value, this will be = x

bar t + this quantity and this quantity is nothing but this quantity.

So at = X bar t + X bar t - X double bar t.  This quantity  = this  quantity. We have already

calculated this. Therefore, this quantity will be = 2 X bar t - X average and the slope is = X bar t

- X double bar t/N - 1/t therefore at this point suppose that we are interested to make a forecast m

time period (()) (17:41) then it will be this + m * bt. If it is to the next time period, then N = 1

then the forecast for the next time period t + 1 is at calculated in this manner + bt which is this.

(Refer Slide Time: 18:09)

Let us introduce another important in fact more important than moving-average method is the

exponential smoothing method because of its simplicity. Once again consider N data points of a

time series, but we are writing backward defining backward meaning that the most recent value

is Xt 1 period whole value is X t - 1, 2 period whole value is X t - 2, n period whole value is Xt -

n + 1. We write it backward.



And then in order to smooth, we have to attach weights. Let the weights be alpha t, alpha t - 1,

alpha t - 2, and alpha t - n + 1 and we define alpha t as = alpha, alpha t - 1 = alpha * 1 - alpha,

alpha t - 2 defined as alpha * 1 - alpha square like that and so that alpha is > 0, but < 1 and as we

know in order to find out the smooth value,  the weights must be such that they have to be

positive, but at the same time must add up to 1.

So alpha I sum will be alpha + alpha * 1 - alpha + alpha + alpha * 1 - alpha square and so on and

so forth.  If  n tends  to infinity, then this  quantity  is  nothing but  alpha/1 -  1 -  alpha.  This  is

geometric progression series with a progression ratio equals 1 - alpha which is > 0 therefore in

the numerator the progression when we add it up it will be alpha/1 – 1 - alpha and that will

become 1.

So if we define the weights in this fashion then the sum of the weights = 1 and each alpha is > 0,

but < 1. You will see here that if alpha is < 1 then 1 - alpha is also < 1 and alpha * 1 - alpha will

be < alpha. In the similar fashion alpha * 1 - alpha square will be < alpha * 1 - alpha like that it

means that if we associate the weights in this fashion, then weight associated with the most

recent data point is the highest.

The weight associated with the next data point 1 period old data point is < that associated with

the most recent value and this is a decreasing sequence. So the weights have their values in a

decreasing sequence. The highest value of the weight is given to the most recent data and the

lowest value given to the oldest data.

(Refer Slide Time: 21:56)



This is shown in this fashion it is a decreasing sequence of data. Of course this is shown in a

continuous manner. If t is continuous then alpha will decrease continuously in an exponential

fashion and that is why the name of the technique is exponential smoothing technique, because

the weights associated decrease in a negative exponential manner as if t is assumed continuous.

(Refer Slide Time: 22:53)

Now the exponentially weighted average is written as X bar t = alpha Xt + alpha * 1 - alpha Xt -

1 + alpha * 1 - alpha square Xt - 2 and this is nothing but alpha Xt + if you take 1 - alpha outside

you get alpha * Xt - 1 + 1 - alpha * X t - 2. So that is nothing but X bar t - 1. So the exponential

weighted average X bar t which is really a big expression can be certain in this fashion which is



that a weight is given to the most recent value alpha and 1 - alpha is another weight given to the

old average of X that was calculate 1-time period ago.

So X bar t is alpha Xt + 1 - alpha X bar t - 1. Now whenever there is only noise and average

value we take the forecast for the next period as F t + 1 as = Xt itself because expected value is a

and if it has no trend, no seasonality then Ft + 1 will be nothing but = the average value a X bar t.

So our exponential smoothing formula is really this and when used as a forecasting method then

instead of X bar t we could as well write Ft + 1. Ft + 1 = alpha Xt + 1 - alpha Ft instead of X bar

t - 1 we can write Ft.

(Refer Slide Time: 24:37)

We can take an example to illustrate the use of exponential  smoothing method. Let the time

series have a value such as this and how many values we have 1, 2, 3, 4, 5, 6, 7, 8, 9 values so t =

1 to 9 and the values are like this. We can see that it has there is a noise in it looking at it we can

say that there is a noise in it and there are fluctuations and we are not very sure whether there is a

seasonality or not.

Now if you see we need in order to use this equation we need to have the first value X bar t - 1

and  in  this  example  we have  only  the  actual  time  series  values.  We do  not  have  any  past

smoothed value. So we must have to start with an initial value of X bar t. So let us we can in fact

arbitrarily take 2 or 3 values, 3 initial values old values of the time series and use a moving



average  of  the  first  3  such  data  points  to  find  out  the  initial  value  to  use  our  exponential

smoothing method. In this example, we have taken the moving average period as = 3 that means

we have taken the first 3 data points 16, 11, and 13.

And find out an average value of that, moving average value. So 16 and 11 and 13 added/3 gives

us 13.3. 13.3 is taken as X bar 3 and is used when we go the next data point, next time point 4 for

the data value 12 then we take X bar 4 as = we can use our exponential smoothing formula now.

We can say it is alpha * X 4 namely 12 + 1 - alpha, X bar 3 that was calculated from our moving

average method. 

Once we have X bar 4 we can move ahead and use that X bar 4 here to calculate X bar 5 and we

can recursively use that equation to go further ahead. This is the way we proceed when we use

exponential smoothing in a recursive fashion.

(Refer Slide Time: 27:40)

Now this is what we have tabulated in this table. First of all, recall that we have calculated X bar

3 as = 13.3 and the values of the time series data where this now X bar 3 was 13.3 and suppose

that we take a value of alpha as = 0.1 then the next value would be alpha * 12. Alpha is 0.1, 0.1 *

12 is 1.2 + 1 – alpha, which is 0.9 * 13.3. Let me do it here.

(Refer Slide Time: 28:44)



We had the data points 16, 11 now the average we have calculated here as 13.5 that is X bar 3. To

calculate X bar 4, we take alpha * X4 + 1 - alpha X bar 3 and that is = suppose we take alpha =

0.1 then this is 0.1 * 12 because this is X4 12 + 1 - alpha is 0.9 * 13.3 which is X bar 3. This is =

1.2 + whatever it is coming and that is = 12.9. So this is how the value is calculated X bar 4 and

now once you have X bar 4 value go to the next one you have to take 0.1 * 12.9 + 0.9 * the X5

value which is available as 20 and likewise you calculate X bar t for all the values.

Now suppose instead of taking alpha = 0.1, I take alpha = 0.9 because alpha can take a value

from 0 to 1. Then the corresponding this value remains same because that was calculated on the

basis of the moving average value, but this value will continue to change, but we use the same

formula. Now we plot it here, this is time, and this is the data values. The firm line in blue is the

actual time series data which was 16, then 11, then 13, then 12, 20, etc.

So this is  the actual  time series data.  Smoothed values on the basis  of moving average was

calculated here at 10.3 and if we use 0.1 the red dotted line is this the value behaves in this

fashion X bar t goes down a little bit here and then slowly rises does not consider so much of

fluctuations. It does recognize that there is a rise in the average value. The average here was

much less, but the average here was much higher.



It is increasing, but not a very fast rate and when we are taking alpha = 0.9 instead of 0.1 the

brown red may be that dotted line is closely following the actual value. So it means a higher

value of alpha gives the higher weightage to the most recent data and low weightage to the past

data and therefore it has a tendency to track the change quickly. Its response is fast whereas when

we take  alpha  =  0.1 then  it  is  unable  to  track  the  underlying  change and it  smoothens  the

fluctuations quite a lot.

(Refer Slide Time: 33:19)

This is shown here, suppose that there is a step rise in the value of the X that is the time series

data, suppose if there is no noise, no trend, no seasonality etc, then the average value remains

same, but when there was a step change with a small value of alpha it increases slowly, but with

the high value of alpha its response is very fast that is the advantage of taking a higher value of

alpha because it keeps higher weightage to the most recent data and that is close to 1.

(Refer Slide Time: 34:06)



So a low value of alpha gives less weight to the most recent data. It smoothens out noise, but it

cannot track the underlying changes very fast whereas a high value of alpha gives more weight to

the most recent data and tracks the underlying change quite fast.

(Refer Slide Time: 34:43)

Now that we know that the value of alpha can be high or low and higher value of alpha is able to

track the underlying change, but the lower value of alpha can smoothen out random fluctuations.

If the data does not contain any underlying any trend, but we use a higher value of alpha then it

will have a tendency to even track the random noise that means the forecast would be as noisy as

the original data and that is not what we want.



We would like to track only when there is an underlying change in the value of the average. We

do not want to track the noise so whenever we do not foresee any change permanent change in

the average, the change is noisy, the change is random fluctuation then we use a small value of

alpha, but if we have strong reasons to believe that the average itself is undergoing a change then

we take a higher value of alpha.

This has led to using a method where alpha is changed adoptively so that is called forecasting

with adaptive smoothing constant. This alpha is called smoothing constant and with change the

value of the smoothing constant we change it depending on the error forecast error. Now this is

an example we visualize first of all in this diagram first let us say that in the beginning there was

not much of a change in Xt so we can take a small value of alpha.

But here Xt is undergoing a change almost a permanent change is occurring, so we should be

able to understand that there is an underlying change and therefore change of alpha from a low

value to a higher value such as 0.8, so that it quickly tracks the change and once this is more or

less stabilized there is not much of a change, it is stabilizing then we reduce the value of alpha so

that the noises are not tracked so much, so this can be done by using a method which works in

this fashion.

Here we first of all find out the error. Error we have already known Xt - ft that is the error. So

that is Et. Et is Xt - Ft. So error is first of all smoothed giving a smoothing constant beta. Beta et

+ 1 - beta et - 1 exactly the similar formula to find out smoothed error. Then the smoothed

absolute error we find out that is Et absolute value and find out its smoothed value we call it

smoothed absolute error.

The ratio of the smoothed error to the absolute error is taken as the smoothing constant for the

next time period and this is used in our calculation to make the forecast and this is how one can

change alpha here for example if we continue to use alpha = 0.1 the forecasting error will be

high. When the forecasting error is high alpha will be changed following this formula and that

will give a higher value of alpha and at this point when forecast error will come down then alpha



t - 1 this value will automatically be reduced to a value close to 0.1 or so. This is the forecasting

method with smoothing constant that adopts itself with the forecast error.

(Refer Slide Time: 39:29)

Now if the time series contains average trend and noise a + bt + epsilon t then what is done? First

of all we calculate the current trend. Current trend is Xt - X bar t - 1 of course divided by 1-time

period. So it is X bar t - X bar t - 1. This is once again smoothed because there may be some

fluctuations around the trend. Trend may not be a permanent trend.

So we smooth the current trend and use that current trend to project the future. So 1-time period

projection is X bar t + just t bar t that is the forecast for the next period and X bar t is calculated

following our exponential smoothing method. If it is nth period forecast, then it is m T bar t. So

this is when we have a time series that contains an average a trend, bt, and the noise.

(Refer Slide Time: 40:51)



When we have seasonal data then what we do is to first of all deseasonalize. Suppose that we

have data.

(Refer Slide Time: 41:05)

That goes up like this then what we do we find out an average value and find out to what extent

the ratio of these values from the average. So they are the It values. I is the seasonality index. We

calculate first of all an index I. So if we divide this by that I we get this, that is the idea. We

divide this by I we get the average value. We divide this by I we get this. So first of all the values

are deseasonalized so we have to find out initial value of I which is smoothed once again.



Later as you can see here using similar equation Xt - X bar t is basically IT and it is the current

seasonality index. This is the L period back calculated. L is the seasonal period of seasonality. So

these seasonality smoothing is done here. Overall smoothing is done here and we work with the

deseasonalized data X bar X t prime. X t prime is defined in this fashion. As usual as before

current trend is calculated and smoothed and I is smoothed.

The forecast finally is this smoothed value calculated in this fashion + the m period had trend

added  to  it  *  the  seasonality  index  calculated  for  the  mth  period  (())  (43:08).  This  is  how

exponential smoothing is used for seasonal data. Before we close our lecture we would like to

just give an introduction to a very useful, but highly sophisticated method of forecasting which is

known as Box-Jenkins method or ARMA-ARIMA method. We will just give an introduction to

Box Jenkins method introduced by Box and Jenkins.

(Refer Slide Time: 43:45)

Also, known as ARMA, ARIMA method. We just give an example. Suppose, we already know

that F t + 1 = X bar t that is smoothed value calculated at time period t is taken as the forecast for

the next time period and that is known as alpha Xt + 1 - alpha X bar t - 1. Now we can write this.

We can write Ft therefore as nothing but X bar t  - 1 and we can write X bar t - 1 using it

recursively as X t - 1 + 1 - alpha X bar t - 2 and this can be written as alpha X t - 1 + 1 - alpha. X

bar t - 2 can be written once again recursively as X t - 2 + 1 - alpha X bar t - 3.



So like this if you proceed we shall get X t - 1 here + alpha * 1 - alpha X t - 2 + alpha * 1 - alpha

square X t - 3 and we will proceed like this. We can therefore write you can see that forecast for

the time period t is a function of the time series data X at 1 period lag, 2 period lag, 3 period lag.

Therefore, there is a regression. This is a regression like equation and if we replace Ft as Xt we

can say this is a1 X t - 1 + a2 X t - 2 + a3 X t - 3 so this is called an auto-regression on an

autoregressive model. Keep this aside and now have the moving average form of the same thing.

Now if we write.

(Refer Slide Time: 47:21)

F t + 1 as = alpha x t - 1 + 1 - alpha X bar t - 1 we can write this as alpha X t - 1 + 1 - alpha Ft

forecast for the time period t is the average calculated at t - 1 therefore we can replace X bar t – 1

by Ft. This we can write as F instead of Ft + 1 we can now let us write Ft. Ft will be = alpha X t -

2 + 1 - alpha F t - 1. This we can write as 1 * F t - 1 therefore we write F t - 1 + alpha * X t - 2. I

am sorry there is a mistake here. Now let us redo, there is a mistake here, I am sorry. 

(Refer Slide Time: 49:00)



F t + 1 = we know X bar t. So F t = X bar t - 1. Now this is = alpha X t - 1 + 1 - alpha F t - 1.

This  is  = F t  -  1  + alpha Xt -  1  -  Ft  -  1.  This  is  nothing but  the forecast  error. In fact,  1

interpretation of the exponential  smoothing forecast is  that forecast  is the old forecast + the

forecast error given some weightage alpha. Now we can expand Ft - 1 like before we can write F

t - 2 + alpha e t - 2. If we call this difference as error e and this, we can write et - 1 error. 

So if we proceed this way then we will land up with writing this first alpha e t - 1.

Next this alpha e t - 2 and like this. So in general we can replace Ft by Xt and we will say that Xt

= b1 e t - 1 + b2 et - 2 and so on. So this is normally called a moving average form. Remember

that this moving average is not the same as the moving average that we had used earlier, but

unfortunately this term moving average is used in this sense. Now if we use this form which is

the autoregressive form where Xt is regressed or related with its own past value.

And this is the moving average form where xt is related to the forecast error. If we combine the 2

we get what is known as ARMA method.
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We will say AR1 = Xt = some constant mu + phi 1 Xt - 1 + et. Similarly, MA1 we shall say Xt as

= mu + et - theta 1 et - 1 and we will say ARMA M1, 1 is Xt = phi 1 X t - 1 + mu + et - theta 1 et

- 1. Basically, what we are trying to say here is that exponential smoothing method is equivalent

to some sort of an autoregressive model and some sort of a moving average model of the form

that I had just now developed.

AR1 is only 1 period lag value is taken that is why it is autoregressive of order 1. This is a

weight phi, this is a constant mu, and this is the error term e. In the moving average form of

order 1 only 1 period lagged value of the forecast error is taken which is given a weight theta and

this is the current forecast error that gives the value Xt and if we use both autoregressive of order

1 and moving average of order 1 then Xt = phi 1 Xt - 1 + mu + et - theta 1 et - 1.

Now this are what is called the very elementary forms of autoregressive and moving average

models  used  in  the  Box-Jenkins  methodology  and  for  short-term  forecasting  that  considers

autocorrelation this ARMA/ARIMA methods are quite important. However, time does not we do

not have sufficient time to discuss these methods. We have spent nearly 4 hours on long-term

forecasting which is mostly qualitative and medium-term forecasting which is usually regression.

Based and short-term forecasting that makes use of time series data in which we have introduced

moving  average  methods  and  exponential  smoothing  methods  we  said  that  exponential



smoothing methods are more convenient to use and it can be applied in various situations very

easily, but the most advanced method of time series forecasting which is based on ARMA that is

auto-regression or moving average concepts we just introduced we will not be able to discuss

them in course of these lectures. Thank you very much.


