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Good morning. Welcome to the 34th lecture on Economics, Management, and Entrepreneurship.

In our last lecture, we discussed about product development. In particular, we discussed about

the difference between products and services. We talked about different phases of product life

cycle and also we discussed about features of product design and value engineering. Today, we

shall discuss on forecasting.

If you recall in one of our earlier lectures, we had devoted a full session on demand forecasting.

At that time, we had discussed at length on various qualitative methods and we had given only a

glimpse of various quantitative methods. Today, we would like to revisit the forecasting methods

and in particular, we shall discuss about 2 important quantitative methods: One for intermediate

range forecast which is regression analysis are also called multiple regression analysis.

Which is a part of the broader econometric models and also we shall consider time series based

forecasting,  which is  usually  used for short  term forecasting with the knowledge on these 2

important forecasting methods. It will be easy for us to use these methods to estimate forecasts of

demand and then use these forecasts  for different decisions such as plant  location decisions,

capacity  requirement  decision,  machine  requirement  decisions,  and  of  course  production,

planning, and inventory control decisions. So today's lecture is titled forecasting revisited.

Forecasting revisited is the title of today's lecture.
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First of all, let us recall that to forecast is to make the best estimate of the value of a variable at a

future point of time. Then naturally any estimate is always associated with error that means there

is an error there will be always an error between the estimate or the forecast made at a particular

time in the future and the actual value of the variable at that point of time. This difference is

usually called the forecasting error.

The accuracy of a forecasting method is judged by the quantum of forecasting error not at one

point of time, but at different points of time. Therefore, different criteria are used to judge the

best forecasting method and normally the best forecasting method is chosen to minimize the

mean absolute deviation or the mean absolute forecasting error or mean square error or similar

such criteria, which is a function of forecasting errors at different points of time at future points

of time of time.

Now it must be also remembered at this point of time that usefulness of the forecast is more

important than accuracy. The reason is this. That is if we know that a situation in the future is

going to be very bad somebody makes a forecast we take preemptive actions to prevent the

occurrence of such an event. So naturally in such a case, the forecast is not accurate, but it was

highly useful. It is a self defeating type of a situation where a forecast is very useful, but is not

accurate.



On the other hand, there are situations where we make a forecast at the future point of time and

then needs a capacity decision, capacity requirement decisions are made on the basis of future

projections of demand. If this projection is made, then the company tries its best to augment its

capacity and also it produces and aligns it marketing forces such that it  is able to utilize the

capacity fully and sell the amount that was projected in the market.

Now this is a case of self full filling forecast. In any case, the forecast is judged not so much for

its accuracy, but for its usefulness in taking decisions to improve the situation or to avert a bad

future. Now so in any case a forecast is basically a piece of information and every information

has got a value and a decision is sometimes defined as an information converter. A decision is

made on the basis of information. 

A forecast is a piece of information and that is an input to taking decisions. Since forecasts are

associated with errors forecasting errors usually 3 types of forecasts are made: 1 is optimistic

forecast. 2, the most likely forecast. 3, the pessimistic forecast.
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Forecast horizon times and forecasting methods are usually related. As we had discussed earlier

for the long term forecast horizon time we use qualitative methods depending on the judgment of

informed individuals and we already know of various methods such as Delphi methods, market

survey methods, and we can also use historical analogy in which 1 product has gone through a



product life cycle and another product of the same type is expected to go through similar life

cycle variations or stages.

That  is  historical  analogy  and life-cycle  analysis.  Intermediate-term forecasting  methods  are

usually cause-effect based and there are different types of methods. 1 single equation methods,

they  are  normally  known  as  regression  methods  and  there  can  be  multiple  equations  so

econometric  models  are  basically  generalized  models  of  regression  analysis  and  there  are

methods that are useful in the short term and they constitute the various time series methods.

Today we shall discuss mostly about the regression methods and the time series methods.
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First, the regression methods of the analysis, that is made for regression methods. So what is

regression  analysis?  It  is  concerned  with  the  study  of  dependence  of  1  variable,  which  is

normally called the dependent variable on various independent or explanatory variables.
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In regression analysis, we deal with statistical relationship among random or stochastic variables

that have probability distributions. So we deal with statistical relationships.

(Refer Slide Time: 10:26)

Regression is not same as causation. A statistical relationship in itself does not logically imply

causation. Regression is related to correlation, but they are different concepts. Correlation deals

with 2 variables, treat both variables as stochastic, and finds linear relationship, or association

between them. It is also symmetric in the sense that if A is correlated with B, then B is correlated

with A, so in that sense it is symmetric. 



Therefore, a correlation is always between 2 variables and it is symmetric and this always or

usually discussed in the context of linear association between 2 variables.
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Regression analysis on the other hand can deal with more than 2 variables. It uses the dependent

variable as stochastic and explanatory variables as fixed and finds out a stochastic relationship

between them. It is also not symmetric. It is asymmetric. In the sense that if A is explained by B,

it is not same as B is explained by A. So these are the differences.
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Now for both regression analysis and time-series analysis they depend on data. Regression can

be done on time series data, on cross sectional data, on panel data, and pooled data, now what are



they. Time series data is basically  one variable  or more than 1 variable  at  whose values are

known at different points of time. This is time series data. Cross sectional data is at the same

point of time many variables values are known for various subjects.

Pooled data is cross sectional data over a short span of time and panel data is a special form of

pooled data, where cross sectional units are observed over a longer span of time. Regression

analysis can be done on each type of data. We shall however discuss only the regression analysis

done on cross sectional data, meaning that the values of the variable at a particular time are

collected for different subjects.

(Refer Slide Time: 14:02)

Regression of a variable Y on x. Y is the dependent variable and x is the independent variable

leads to what is known as the regression line and is given by the linear equation E y given x =

beta 0 + beta1 x. So linear relationship x is the independent variable and Y it depends on x and y

is a dependent variable and x is independent variable. Beta0 and beta 1 are regression. I am sorry

this is regression parameters not coefficients, they are regression parameters. 

Beta0 is the intercept and beta1 the slope coefficient. Usually beta0 and beta1 are unknown and

are to be estimated given the different values of Y and X for different subjects at a particular

point of time.
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Now we normally deal with equations that are linear in parameters. What does it mean? It means

that our unknown variables are beta0 and beta1, unknown parameters whose values we would

like to estimate. Therefore, if we have a relationship such as this although this contains xi square

it is actually a numerical data. Y is also a numerical data. Therefore, the only unknown quantities

are beta0 and beta1. 

Thus, it says it is linear in parameter whereas if we have relationship such as this where beta 1

appears  here as  an exponent  of the data  remember  that  although we use x for an unknown

quantity usually for variable. But actually it is a value of a variable in numerical quantity. It is a

numerical  quantity  such  as  5,  10,  15,  20  etc  that  raise  to  the  power  beta1  obviously  the

relationship is not linear, it is nonlinear. 

You take log, and then it becomes ln beta0 + beta1 ln xi. This of course becomes ln. If you

consider this as a variable and this is a one therefore this term becomes a linear relationship. This

depicts a linear relationship. This is usually called a log linear relationship.
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Normally we add a random noise here a disturbance factor for every individual  i,  for every

subject I or every cross section unit I it will be the population relationship that is beta 0 + beta

1xi + there will be a random error. This is the stochastic error term. Beta0 + beta1xi constitutes

the systematic or the deterministic component and epsilon I is the random or the non-systematic

component and I is for every cross section unit or the subject i. 

Once again suppose that we have a relationship of this type this is still linear in parameters and if

the relationship is this type by taking log, it is linear in parameter.
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And for an individual cross sectional unit it is this.
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Now it can be shown in a graphical form. This is our sample regression function, the linear

function, the systematic relationship between y and x of the deterministic relationship, but for

every cross sectional unit or subject 1, 2, 3, 4, 5, and 6 the actual values are different. Therefore,

this and this is due to the error, error that is attributable to this particular unit. This is the error for

the third unit.

This is the error for the fourth unit, fifth unit, sixth unit, and if we can estimate the values of the

parameters  call  them beta1  estimate  and  beta2  estimate  then  this  relationship  that  does  not

contain the error term gives the value of yi that lies on the line SRF + this error term will give the

actual value. Therefore, yi hat is basically a point that falls on SRF line and is just below the

actual value line that means it is somewhere here. For the fourth one it is somewhere here, fifth it

is here, sixth it is here.
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Now let us go for determining how the regression parameters are actually estimated. Let Y be the

response  variable  or  the  dependent  variable.  X1,  x2,  xk  and  now considering  more  than  1

independent variable. I am considering k independent variables so, k independent variables and 1

dependent or response variable. 

So the regression model is Y as a function of all this + an epsilon term and when written down in

the expanded form it is written as y equals beta0 + beta1x1 etc beta k xk + epsilon, where beta0

is the intercept.  Beta1, beta2,  beta k are the regression coefficients and y is the value of the

dependent variable.
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Betas are called the partial regression coefficients. They measure the expected change in y for

unit change in xj when all other variables are held constant and epsilon is an error term that

indicates the influence of other independent variables that have been ignored while making the

model.

(Refer Slide Time: 22:16)

Now, we can have complex multiple linear regression models. Suppose we have an equation

such as this beta0 + beta1x1 + beta2x2 + beta12x1x2. So even though it is written x1x2, but

basically x1 and x2 are numerical values therefore the product is also a numerical value. So this

can be written as x3, where x3 = x1x2 that can be found out given the values of x1 or x2.

Therefore, this is equivalent to another equation where beta3 is nothing but beta12 and x3 =

x1x2.

Similarly, if we have an equation such as this containing x1 square terms and x2 square terms we

can write x1 square is = x3 and x2 square = x4. Then this becomes a linear form. Therefore,

although we can have situations where we have in variables the relationship could be nonlinear it

can be transformed into relationships or equations that are linear in parameter. So basically we

are taking up cases that are linear in parameter.
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Now what we normally do is to estimate the values of the regression parameters by minimizing

the least square errors. Will there be n observations if k is the number of independent variables

then n should be larger than or higher than or more than the number of variables of xj and y. xij

be the value of the ith observation of xj, j = 1 to k and yi be the corresponding value of the ith

observation of y.

So we write yi = beta0 + beta1 xi1 + beta2 xi2 that means for the ith observation we have the

values of x1, x2, xk etc and also y and normally epsilon the random error component is defined

as normally distributed independent normally and independently distributed with 0 mean and

constant variance sigma square. This is a symbolic notation for stochastic variation of the noise

component epsilon normally and independently distributed random variable with 0 mean and

variance sigma square.
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And since we have many observations it is possible to convert it into a vector matrix form. We

can now write. We had y1, y2, y3 etc we can write y as a vector of all the observations of the

dependent variable since there are n number of observations it will be n * 1 column vector, x can

be a matrix n * p where p = 1 + k. beta is a column vector of coefficients with say dimensions’ p

= 1 + k and epsilon is a vector of random errors.
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This will be clear from this table. These are the variables. Y, the dependent variable and x2, x2,

xk are the independent variables. We have n different observations or n different cross sectional

units or n subjects. For every subject the values are collected at a particular point of time. Let for

the first cross sectional unit the values are this, for the second the values are this, and for the nth



cross sectional unit the values are this. So what I am now saying is that these constitute a column

vector y and this and a one vector we will constitute the matrix X.
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Now this is shown here. Y is the column vector of the dependent variables. Beta is the column

vector  for  all  the  regression  parameters.  As you know there  are  k number  of  variables  and

therefore  associated  number  of  parameters  are  k  in  number,  but  there  is  an  intercept  beta0

therefore it becomes k + 1. That k + 1 is written as p. So it is given a notation p * 1. So let us say

p * 1 column vector and epsilon is also n * 1 there are n number of cross section units.

This 1 comes here because of beta0. If you multiply x with beta, then you will get back y1 =

beta0 + beta1 x11 etc. There is one mistake here. This should have been xi k and not. So I

basically said that we said that we collect data on the independent variables x1 through xk and on

the  dependent  variable  y  for  each  of  the  n  cross  sectional  units  and  then  we have  various

equations y1 = beta01 + beta1 x11 + beta2 x12 etc. 

Now, this I can now put in the matrix form such as this where this is a vector, this is a matrix,

this is another vector is another vector with this dimensions.
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The  problem is  to  find  the  vector  of  least  squares  estimators.  This  should  come  here.  The

problem is to find the vector of least square estimators called then beta hat that minimizes the

some of the squares of the random errors epsilon I square I = 1 to n and that is nothing but

epsilon transposed epsilon.  What is  this? This is  y -  x beta transposed. This will  lead to by

transposed y etc. From here without going through the derivation we can finally get the estimate

for beta and the estimate for beta is it is x transposed x inverse x transposed y.

X is basically the if you recall x is this. This particular with 1's in its first column and the data

that we had collected for every cross sectional unit’s independent variables are here. So this is

the final expression for beta hat. X transpose x inverse x transposed y. Now that we know beta

hat we can find out y hat, the estimate of y = x * beta hat. Now we know the actual value of y at

the particular point of time and we have estimated the value of y and therefore we can find out

the residual. We normally call this as residual e.
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Now this is a graphic representation of what I was trying to say for a case when it is a single or a

simple regression with one independent variable x, one dependent variable y. This is the SRF.

Sample regression function and these are the errors or the residual e1 through e8 and by the (())

(32:57) a point lying here is the estimated value of y for this value of x. For this value of x the

estimated value of e is this. So basically this line is y hat line and the actual value is here. The

difference is the residual ei.
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Now we can find out the error sum of squares, it is the actual value of y - the estimated value of

y that is y hat y square them sum over I = 1 to n. This is nothing by ei square and this can be

written as e transposed e if e is a vector and then we can final expression. The total sum of



squares can be found out in this manner and 2 regressions the sum of squares will be total sum of

squares - the error sum of squares.

From here we define a coefficient of multiple determinations R square which is regression sum

of squares/total sum of squares. Well regression modeling is mathematically quite complex. We

did not want to go into the details of the mathematical details. The basically what I want to tell

here is that per different cross section units or subjects we observe values of the independent

variables and the dependent variables.

Dependent variable is y, independent variables are x1, x2, xk and then we find out the equation

of the regression line so linear regression by estimating the best values of regression parameters

beta0, beta1, up to beta k that minimizes the regression mean square errors or square error is

called a least square estimation. It is given by in the vector matrix form we can write y vector = x

beta + epsilon and we can find out beta as x transpose x inverse x transposed y.

That is the expression for beta. Once beta estimate is known we can find out, we can make the

estimate of y at different values of x by using the relationship y hat = x beta hat. Then we can

find the difference of the actual value of y and the estimated value y hat we call it error. Given

the error we can find out 3 types of sum of squares: Error sum of squares, total sum of squares,

and regression sum of squares.

The  ratio  of  regression  sum of  squares  to  the  total  sum of  squares  tells  us  how much  our

regression equation explains the variation is called SSR/SST. The explained how much SSR is

the error sum of squares defined by or explained by our regression model but the actual sum of

squares is SST, the total sum of squares.
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Normally, we go for an adjusted R square statistic because sometimes we are not very sure as to

which variables influence the value of y which independent variable. The choice of independent

variable is sometimes quite challenging. One may take large number of variables to explain y. It

has been seen that quite often many of them are not important, many of them are related with

each other and they can increase the explained sum of squares that means r square value.

So R square does not always indicate the adequacy of a regression model. It has to be adjusted

for because of redundant or near redundant explanatory variables being included. That is why it

is given by 1 - error sum of squares/n - p and/total sum of squares/ n - 1. Once again R square are

adjusted as R square are good indicators of the extent to which the errors are explained by the

regression line.

We also use t statistics to find whether a particular beta is significantly different from zero. This

is beyond the scope to discuss how t statistics are calculated, but basically there are what I want

to say is  that  there are quite  a large number of software packages  that deal  with regression

modeling, a regression analysis. If you can define the independent variables x1 through xk and

independent variable y and give their values for different cross sectional units.

Then it will make the calculations for yourself the software package will make the computations

for yourself and for you and then define the R square values find the R square value and find the



t statistics and also do lot of other things. So we should know the meaning of these statistics

rather than how to derive them.
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So if for example what I want to say is that suppose by regression modeling I get a model such as

this 20.50 + 0.1x1 - 8.2 x2 + 2.5 x3. Now these are the estimated values. This is estimated value

of beta 0. This is estimated value of beta 1, estimated value of beta 2 and of beta 3. These are the

standard values that came out of our equation which was beta 0, beta estimates = x transposed x

inverse x transposed y. Now look at the values, 8, 2.5, 20.5, and 0.1.

Now this 0.1 looks appears to be very small. The contribution of x1 to the change in y seems to

be quite less. T statistics say whether this 0.1 is closed to 0 or whether this is closed to 0, this is

closed to 0 and normally there are test of hypothesis with the method of which we can find out

whether each of these coefficients are different from 0. Looking at it appears as though 0.1 is too

small  compared  to  these  2  and  probably  it  can  be  considered  that  the  effect  of  x1  is  very

negligible.

And therefore we can straight away neglect this we can say that the equation y hat it is = 20.5 -

8.2x1, x2 + 2.5 x3. So t statistics help to find out whether the coefficient is significantly different

from 0 at what level of significance and then as I said R square values gives us R square = let say



0.9 tells us the 90% of the variation in y is explained by these 3 factors whereas if the R square

value would have been only 0.45.

It will augment that only 45% of the variation in the value of y is explained by the regression

equation. So this is the notation of these 2 statistics instead of writing R square as I told you we

should normally go for some sort of an adjustment to indicate how far redundant variables have

been added to our list of independent variables. Now after we do all this we also go for residual

plots. If you remember
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We calculate for each cross section unit I we calculate ei the residual yi - yi hat. This is the value

of yi that we calculate from our regression equation and this is the actual value. Now that we

have the residuals with us these residuals are actually surrogate measures of epsilon i. epsilon I is

the noise which we assumed to be normally distributed with 0 mean, and constant variance sigma

square. This was our original assumption when we derived the betas.

Therefore, now is the time to actually judge whether these assumptions are actually justified.

This justification can be examined only by analyzing the residuals ei. So what we do there are

different forms of analysis of the residuals. They are called residual analysis. Regression model

is  incomplete  unless  a  residual  analysis  is  also  made.  The  residual  analysis  normally  takes

different forms; we have discussed here.



We have only indicated here different plots, residual plots. One is the normal probability plot of

the residuals. Because we had assumed the errors to be normally distributed the residual should

also  be normally  distributed.  Then the residuals  versus  the  predicted  values  of  the response

variable  should not show a pattern and residuals  versus values  of each regressor variable  xj

should also not show any pattern let me explain this.
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Suppose that we have residuals ei I = 1 through we have n number of observations. We can now

plot ei as a histogram or as a cumulative distribution function. As you know a normal probability

continuous normal function, normal density function looks like this and when we can draw a

cumulative distribution function that  goes up like this  from 0 and become 1.  This is from -

infinity to+ infinity. This also goes to + infinity to – infinity, but the area is added up that is why

this always rising. This is called a cumulative distribution function.

Now if this axis is probably scaled then it is possible that this curve looks like a straight line. If

this axis is properly scaled, this raise from 0 to 1, but it is properly scaled. So we can say that this

is the ideal normal curve, normal CDF, normal curve, and our actual ei when plotted in this

manner may actually look like this. Now this extent of deviation from this is normal and this is

actual indicates to what extent the normality assumption is deviated in the data. So this normal



probability plot basically is done in this manner. The second type of plot that is required for

residual analysis is plot of residuals
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Versus the predicted values y bar for different i. So this is observation number 1, number 2,

number 3, and like that 8 or 19 observations. The errors some will be positive; some will be

negative. Let us say that the values are like this. Now you can see that there is a pattern. Or that

you may normally if there is a relationship normally it will show a pattern such as this increasing

pattern. There is also a pattern here.

There  is  a  cyclic  variation  or  a  seasonal  variation  here  and  there  is  a  diverging  pattern  of

relationship between ei and yi hat. Both indicate that it is not random that there is a relationship

and that variance sigma square iis not constant in this case. It is a function of yi hat. The third

plot is the plot of residuals versus each regressor xi. Now here you will have for each regressor

x1 and x2 and x3 you may see all the points lying here. There are so many observations.

For this it  may be here. For the third you may see it here. So basically the deviation would

indicate how far ei depends on xi. So these are the different ways by which the normality is

judged. The independence is judged and the constant variance assumption is judged. So friends I

discussed a full  session on regression analysis  because regression analysis  is  quite  useful  in



making demand forecasting particularly for a new entrepreneur who has had not much of a pass

data.

If pass data were available a time series forecasting method could have been used instead for a

new entrepreneur,  he  can  make  assumption  regarding  demand  of  a  product  on  the  basis  of

various  economic  variables  that  are  g and p population and so on and so forth.  For  such a

situation the most adequate forecasting model is the regression model. In our next class we shall

take  an  example  and  of  regression  model  and  then  use  or  expose  you  to  the  time  series

forecasting method.


