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Good morning, we will continue factor analysis, that is the third lecture on factor 

analysis. In first lecture, we have described the conceptual model and we have given 

some examples. In second lecture, we discussed about the model estimations, that is 

from principle component analysis point of view from principle factor method point of 

view. Also, we have discussed about the maximum likelihood method point of view. 

This lecture will start with model adequacy test, model adequacy test then followed by 

your factor rotation, followed by factor scores. Then I will show you Spss exploratory 

factor analysis and if time permits I will go for confirmatory factor analysis, but only 

basics. So, under model adequacy test I have already discussed the Correlation matrix. 

I said that if there are substantial correlation coefficients greater than equal to 0.30, then 

you go for factor analysis means suppose you have a large data matrix and correlation 

coefficient matrix is p cross p. There is large number of values, large number of values 

having more than 0.3. Second is Bartlett’s sphericity test, Bartlett’s sphericity test uses 

this formulation that you find out the correlation matrix. 



First take the determinant of it and take logarithm of this, then you multiply with this, in 

this ultimately follows chi squared distributions with p into p minus 1 by 2 degrees of 

freedom. Now, if this quantity, if this quantity is more than the tabulated values then the 

hypothesis is that no factorization possible. That factorization not possible that is not true 

here, so we will reject null hypothesis in this case.  
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Then, another one is that large sample test which is likelihood ratio test large sample 

Likelihood ratio test. So, we will again give you the Bartlett procedure here, here the null 

hypothesis is that the co population covariance matrix is coming from the factor model 

[FL], we are able to reproduce from the factor model. This population covariance matrix, 

it is correct and H 1 is that sigma is any other positive definite matrix. 

So, this is my step one that means set the hypothesis set the hypothesis, your step two 

you have to find out the statistics appropriate test statistics, what is your test statistics. As 

I told you that it is the locality likelihood ratio, so minus 2 log this capital lambda, this 

lambda is not this capital lambda. So, in this case this is basically, similar to this Wilks 

lambda what you have seen earlier that similar to Wilks lambda type of things. So, if I 

write like not lambda here if I write that this is our let it be w. 

So, we are creating this and that one is minus 2 log deter log determinant of that sigma 

cap by determinant of S n where S n is n minus 1 by n into S that is the sample 

covariance matrix for n greater than m m very large tends to infinity and S n become S. 



So, for large sample size you can use S determinant here determinant of S then once I 

know, so that means what is my test statistics here my test statistics is minus 2 log 

determinant of sigma by determinant of S n. Then you have to find out that what is the 

sampling distribution sampling distribution of the test statistics test statistics, now 

Bartlett says that that m log determinant of sigma by S n. 

So, please keep in mind that we are writing the estimate value here sigma this one 

because this is what is our random variable random component here. So, this follows chi 

squared distribution with half of p minus m square minus p plus m, that degrees of 

freedom. So, first this hypothesis related to the population then sample statistics related 

to the estimates then your sampling distribution related to the estimate. 

Now, you have to take the decision, decision will be reject H 0 if this quantity if i write 

this total quantity as d so greater than equal to chi square half p minus 1 square minus p 

plus m that alpha for maybe usually alpha will be 0. So, we will reject a 0 for this 

condition, what does it mean you are saying no it is not that the factor model is not able 

to reproduce the population covariance matrix. So, if you want to have your factor model 

acceptable then H 0 should be accepted. Now, this is from the hypothesis distinct point 

of view correlation matrix Bartlett test, all those things we have discussed. 
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Next issue is that number of factors to be retained, how many factors you will get. So, it 

is similar to principal component analysis where we have seen that number of component 



to be kept by several means for example, percentage cumulative variance explained. 

Then we have also given you Eigen value criteria from much it may be Eigen value 

criteria, when you use R matrix then screed plot is there. Similar things, similar many 

things here explained there for example, let we have p variables we have extracted, let it 

be two factor three factors. 

You know the loadings, if I say then you know the Eigen values here this is 2 j, 3 j, 3 j 

equal to 1 to p F square. So, you find out the percentage, what percentage it is, what 

percentage it is, what percentage it is, and then you find out the cumulative percentage. 

Set a criteria criterion, let you want the cumulative percentage, it should be greater than 

equal to 90 percent are these three factors you are considering able to explain this. 

If yes, this factor model is good and you can keep three factors, now screen plot also you 

have seen earlier screen plot what is in that, this Eigen value will satisfy factor one factor 

two like this Eigen value. Suppose, your values are coming like this, so this is your 

elbow, so you keep three factors and Eigen value when you use R matrix. So, for those 

Eigen values which are more than 1that you consider at least 1, [FL] that one variable 

variability will be explained by this. So, this is similar to usual component analysis, how 

to keep, how many fact components you want to keep.  
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As we have discussed earlier factor analysis has two important purposes, two important 

purposes, what are those two, one is your definitely dimension reduction, second one is 



interpretability. By interpretability, we want to mean that we will be able to provide 

name to each of the factors correct. 

So, how to provide name for example, consider that we have three factors here and there 

are several variables like this and when you have seen the loadings that use lambda 

values. You may find might have found out a situation similar to this where these 

loadings are high, where with factor one these loadings are high with factors two. These 

loadings are higher factor three, but other loadings like x 1, x 2, x 3 loadings on factor 

two as well as factor three are very small negligible. That means, we can ignore those 

loadings under such situation what we can say that x 1, x 2, x 3 is creating factor one x 4, 

x 5 is creating factor two x 6, x 7, x 8 is creating factor three. 

Then, we can probably name these factors considering what are these variables what is 

the nature of these variables the name will be common to this three for F 1. This two for 

F 2, this three for F 3 can you get this structure immediately when you draw when you 

basically conduct exploratory factor analysis. The way we have discussed by any of the 

method maybe your principal component, analysis method, principal factor method, your 

maximum likelihood method any one of the method you have extracted, sorry estimated. 

The factors parameters models are available are you getting this or not it may so happen 

that you will not get this structure under such situation it is desirable to rotate the factor 

in such a manner that that the loading of some of the variables. On a particular factor that 

F 1 that factor that will be maximum whereas, the loadings of other variables will be 

minimum. Similarly, if you want to find some other set of x excluding the ones we have 

consider for the F 1 that which will be highly loaded with F 2 and very low loading with 

other factors. So, this can be possible through factor rotation, so in order to understand 

this fully I will first show you one example. 
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See, this is the results obtained by Maxwell and Lawley 1971 paper, they have conducted 

factor analysis of responses of two twenty students under six variables Gaelic, English 

History, arithmetic, algebra and geometry can the factor loadings were extracted two 

factors factor loadings and commonalities, and like this. Now, if you see this loadings 

Gaelic is equally loaded almost equally loaded with factor 1 and factor 2 because the 

loading value is 0.553 for factor 1 0.429 for factor 2. Similarly, English also definitely 

English has certain higher loading on factor1 little lower, but it is not negligible loading 

for History. 

Again, equal pattern almost for arithmetic yes there is higher loading for factor 1 and 

definitely from compared to 0.74, 0.27 is import a less, but none of the loadings here. If 

you find that our geo in that sense none of the variables are not loaded with the two 

factors considered keeping in mind that this negative symbol here, given this is not an 

issue here. Basically, it may be the negatively loaded or positively loaded, but they are 

loaded. So, under this condition if we want to see the plot of this factor loading, what 

you will see? 
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We will see that this basically for different factors for example, factor 1 and factor 2, 

these are the two axes. Now, Gaelic 0.553 and 0.429, so I think 0.553 is somewhere this 

and 0.429 somewhere this one. This is the first one second English 0.568and 0.288, 

0.568, 0.288this value, then third one is History 0.392 and 0.450 this value then 

arithmetic algebra geometry coming under this side. So, if we consider now these two 

axes that first one this one is F 1 and F 2 that 1, 0, 0.6.  

Then, you find out that if for this three arithmetic algebra geometry almost highly loaded 

with factor 1 and lowly loaded with factor 2, but you cannot say that with the other that 

literature related things like Gaelic, English and History. They are almost at the here this 

side is that is not highly loaded with the second factor or highly loaded with the first 

factor. So, under such situation if I rotate the factor then again you get some better 

picture, so if you rotate then you will get this type of picture. Now, let us see again this 

one and I will draw that how it is possible. 
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Our case is like this case is like this, this is my F 1 and this one is F 2. Now, let us do 

some manipulation, what we can do? We will go for result rotation, first let us rotate 

both the axis like this, this is my new F 1 then if I do perpendicular here, this is your new 

F 2. I am saying this is star x 1 star and x 2 star F 1 star and F 2 star, so this one is rotated 

clockwise, so this angle is theta, so this angle is theta. So, if I know theta then we will be 

able to find out F 1 and F 2 star from F 1 and F 2. That is possible for example, in this 

curve suppose this is equal to 20 degree. 

Then, I think I have given you in principal component analysis one matrix like this T 

which I say cos theta minus sin theta and sin theta cos theta. That mean what they want 

to see here F 1 transposes your F 1 cos theta minus F 2 sin theta and your F 2 transpose 

that new dimension is F 1 sin theta let it be plus F 2 cos theta. Now, this plus minus 

symbol this one here or here it all depend on the theta value. We also have seen that this 

one, this T earlier that if you say that T T transpose equal to T transpose T equal to T T n 

bars equal to i then we say this is orthogonal transformation orthogonal transformation. 

We have done that because digit rotation keeping 90 degree, in fact we have done this 

one orthogonal transformation using this transformation.  
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You got this, you see now these loadings, now if I see the loadings from the arithmetic 

algebra geometry point of view, and this is the place. So, arithmetic algebra and 

geometry point of view, we see that an under factor 2 0.001, 0.054, 0.083 almost zero 

loading, but they are very highly loaded with factor 1 0.789, 0.752, 0.603 this factor 1 

and related to factor 2. Now, at least what you are able to see that the first three 

variables, they are loaded they are higher loading, they have higher loading with factor 2 

in comparison to factor 1. 

So, this is better picture, so we can say now that these two factors are basically talking 

about two things one related to arithmetic algebra geometry which are basically 

mathematical ability. Other one Gaelic English History these are literature based, so this 

may be your verbal ability. So, Lawley and Maxwell this is that intelligence that have 

been arithmetic algebra and geometry, they are mathematical ability and verbal ability.  

These two components are factors are hidden there and which are manifested in terms of 

the performance. In the mathematical subjects as well as the literature based subjects, but 

here one another issue is coming up that issue is, if I go for some other type of rotation 

which is not orthogonal, and then what you will find out.  
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Suppose, if I do there the same this axis, Let it be like this, but the other axis if I rotate 

like this. I will make this angle less than 90 degree, and then this will be known as 

oblique rotation oblique rotation. I mean there will be correlation between the two; there 

will be correlation between the two getting me. Now, what we can do that we want to see 

under orthogonal transformation or otherwise I can say orthogonal rotations, are we 

losing anything related to explaining the variability of the original variables. 
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Let us see this one, what is our covariance structure of the original variable that is sigma 

and we proved that this is nothing but lambda lambda transpose plus sin. Now, if I create 

something like this, when we have created T his type of transformation rigid 

transformation that F 2, if F to F star that is F 1 to F 1 star F 2 to F 2 star. Then what is 

what actually happened, ultimately our model is x minus mu that we say lambda F plus 

this. This is our original model and from this model you got this structure, now instead of 

this if I say that F star is nothing but that is T and T F because what you are doing here 

you are writing F. 

Here, with some other matter this T F is T F why T prop has a having this property 

getting me what I mean my model will change to x minus mu equal to lambda F star plus 

delta some other directions what will happen to this lambda lambda star, sorry lambda 

lambda transpose. So, you wish that it is the basically lambda will become lambda F is 

there this lambda F will become lambda T F, then what I can write, you can give some 

other symbol. 

Then, lambda T f and this side it is coming lambda transpose that will be F transpose 

again T lamb or lambda if we keep out do not keep out just if I say transpose here F 

transpose T transpose lambda transpose, the resultant matrix. What will happen, this 

lambda lambda transpose that will be like this sigma will come lambda lambda transpose 

case, it will be lambda T T transpose lambda transpose plus sin resultant thing will come 

like this. Once you manipulate if this one, now what is T T transpose or T transpose T 

transpose T equal to T T transpose equal to i even the inners also i, so this is lambda 

lambda transpose plus this. 

So, from covariance structure point of view there is no problem, you explain the same 

structure only thing is that this factor values are changing from F to T F some other 

dimension. Now, loadings are changing, so that means factor loading will not reduce the 

explanation power it will keep the same amount of information from the variance 

explanation point of view, but from the interpretability point of view it improves.  
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What are the different types of transformation possible? One is orthogonal, other one is 

oblique under orthogonal, the most commonly used is varimax, varimax rotation. There 

are other methods like equimax, quartimax, but varimax is more popular and varimax 

starts basically tries to suppose if row wise I am putting the x variables and column wise. 

I am keeping F 1, F 2 like even the factors then the purpose of varimax is that it will try 

that x 1 must be loaded with one of the factors. That means suppose if x 1 is loaded with 

this factor let it be least, but all other cases it is 0. 

Similarly, x 2 together with F 1 be 0 and all other cases will be 0, but the some other can 

be loaded here all things will be 0, so like this. So, that mean it will allow some of the 

factor variables to be highly loaded with some of one factor and then rest with other 

factor. Then rest with other like this a clear structure is visible so that is the advantage 

and that is what we want also for varimax rotation there are some formulas available. 

This formulas you can m m go through any standard book, it is possible for finding out 

those things once you have completed all those things that means, all those things means 

what I mean to say you know your factor model. You know your number of factors, you 

have you have satisfied with that number, and you have seen that the adequacy of the 

model is properly tested. 

They are adequate even Bartlett test is also satisfactory all those things, so factor models 

now can be used for some other purposes also what is the other purpose. Other purpose is 



suppose if I go for orthogonal factor model factor model, so whatever factor you are 

basically obtaining they are independent each other. 

So, like principal component analysis these factors like principal components can be 

treated in subsequent regression analysis where this will be used as independent 

variables. In that case what is required you require knowing what will be the values of all 

those variables. So, if you want to know the values of the factors obtained these are 

known for every observations related to x these are known as factor scores. 
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So, pictorially what we can do, we can write like this that you have collected n number 

of data points. You have x 1, x 2 to x p number of variable manifest variables for every 

one you collected the data and you have created factors with these data set F m, you are 

interested to know that for my i th observation what are the values of F 1, F 2 and F m. 

For example, if I say this f i 1, f i 2 like this f i m, this is I can say multivariated 

observation i th multivariated observation on all the factors, but this observations are not 

direct because you are observing directly this x and use you are using factor model. 

There is a union this is basically created through the factor model factor model this is 

observed actually this is unobserved, but you are finding out these values using this. 

These are known, so for the first one then f 1 1, f 1 2, f 1 m for the second observation f 

2 1, f 2 2, f 2 m like this for the last observation f n 1, f n 2, f n m. So, as a result you are 

having a data set n x cos m, these are known as factor scores. 



Now, how do you get this factor scores, what are the methods available? If you see the 

factor model x minus f equal to x minus mu equal to lambda f plus delta what are the 

things unknown, unknown thing. This is also unknown, this is also unknown, and this is 

also unknown only you know this side. Again, this one may be x bar, so though it looks 

like a regression equation, but in regression equation, you know y equal to beta l x beta 

plus epsilon. 

So, there you are interested to find this one, this one no x was given y was given, but it is 

not like this here, so this structure is complicated. Now, finding out this factor scores 

what I can say that f i cap, it is a difficult one, but there are certain methods like 

weighted least square method is there you can go by as it is regression like equation. So, 

regression, regression methods you can use and maximum likelihood methods are there 

also several methods are there. 

If you go through good books like Johnson and Wichen book applied multiply statistical 

analysis, this three discussions are given and how to go for this factor scores. Then our as 

I said that what you have computed that means the adequacy part is over factor rotation 

and factor scores and users factor scores is like this. Then what I want, I want to just add 

little more about the confirmatory factor analysis here. 
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In explanatory factor analysis, you have m factors and there are three observe variables 

and you are linking each like this, and when it is orthogonal then there is nothing like 



nothing but when it is oblique there will be relationship between the factors. So, 

orthogonal and oblique in confirmatory factor analysis will be similar, but with a very 

important difference. This difference is I know, what the factors linked with which 

variable are getting. 

So, since if I take only two factors with three variables suppose that three factors suppose 

with x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9 then this is my lambda 1 1 lambda 2 1, this is 

my lambda 3 1 then this one is lambda 4 2 lambda 5 2 lambda 6 2. This will be lambda 7 

3, then lambda 8 3 lambda 9 3, this is delta 1, delta 2, delta 3, delta 4, delta 5, delta 6, 

delta 7, delta 8 and delta 9. Now, if you want to write in the equation, you can write like 

this x 1 minus mu 1 equal to what will be lambda 1 1 F 1 plus delta 1 x 2 minus mu 2 

this will be lambda 2 1 F 1 plus delta 2 x 3 minus mu three lambda 3 1 F 1 plus delta 3.  

Now, x 4 minus mu 4 will be lambda 4 2 F 2 plus delta 4. So, let me do little 

manipulation here this equal to this related to F 1, now F 2 let it be related to f 3. So, 

what is happening here then this x 4 minus mu 4 is lambda 4 2, F 2 plus delta 4. 

Similarly, x 5 minus mu 5 will be lambda 5 2, F 2 plus delta 5, F 6 minus mu 6, x 6 

minus mu 6 equal to lambda 6 2, F 2 plus delta 6 then your x 7 minus mu 7 x 8 minus mu 

8 and x 9 minus mu 9. If you write this all will come here that x 7 minus mu 7 is lambda 

7 3 f 3 plus delta 7 then lambda 8 three f 3 plus delta 8 lambda 9 3, f 3 plus delta 9. This 

is we are talking about under confirmatory factor analysis.  
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So, as a result if I see this in terms of matrix what you will get you will get x 1 minus mu 

1 x 2 minus mu 2 to x 9 minus mu 9, this side the factor is very interesting.  
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So, for see x 1 minus mu 1 for F 1 you are getting so that means this is lambda F 1, F 2, 

F 3 will be there. So, this one is your 9 cross 1, this will be 9 cross 3 and 3 cross 1 plus 

your delta will be delta 1 delta 2, so delta 9 this is the case, so what I want x 1 minus mu 

1 equal lambda 1. So, lambda 1 F 1 is there F 1 is there here one what will happen 0 then 

lambda 2 1 0, 0. Similarly, 0 letting how many things are there three probably 3 lambda 

3, 1, 0, 0. Similarly, I know last one also 0, 0 lambda what we are taking 9 3, you will be 

getting first three here three variable then 0 second, three variable you will be getting 

here 0, third this will be 0 here, you will get some values. 

So, you are not getting all the random value because which is not required that is the 

difference and another important difference will be here that we want particularly for 

confirmatory factor analysis. We want this also the covariance structure will be there, so 

that means this will be my 5 2 1 2 1, this is 5 3 2; this is 5, 3, 1, 5, 2, 1, 5 the third one 

this structure also we want to keep this. 
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Now, then if I go by the factor analysis that x minus mu equal to lambda F plus delta 

then what will happen you found out. Finally, that sigma is the covariance of x which is 

ultimately expected value of x minus mu x minus mu transpose and then we ultimately 

what we found out for orthogonal case lambda lambda transpose plus sin. We found out 

because in between there was an i we have when you created there is an i, so that i is 

nothing but expected value of F F transpose. 

Now, in confirmatory factor analysis not only we have done this type of that so many 

coefficient lambda loadings are 0 apart from that there is covariability among the F. So, 

this will not become i this is not i rather this will be your phi, so then what will happen, 

the covariance structure will be this phi this plus sin. So, confirmatory case why it is 

because we are going for oblique factor, so keep in mind that that there is definite 

purpose here.  

Why we are going for oblique, because it is basically we are we want to major this 

factors actually there inter relationship this inter relationship is of importance is very 

important for followers. Otherwise, there is no difference supposing, if I go for 

exploratory factor analysis orthogonal then this plus sin and confirmatory factor analysis 

which are terminally, this phi this plus sin phi is the correlation matrix for the factors. 
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Now, with this I say that we can now prepare to see subtract whether see Spss last Class I 

have shown you Spss which is close also let us see Spss that how Spss can be used for 

factor analysis any question if you have any queries, we can discuss. 
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Please keep in mind few things for factor analysis, what is factor? Factor is unobservable 

or hidden we say this are the causes can be can be estimated through manifest variable x. 

There are estimation methods, principal component method, principal factor method, 

maximum likelihood method that covariance structure is this, where this is loading 



matrix. This is the pacific variance this is your original variance you may go for S you 

may go for S that also then you will estimate using one of the method there are several 

test. So, factor adequacy keep in mind keep, in mind your factor rotation factor scores 

then types of model exploratory confirmatory. 
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Let us see this one, I will take one data set state from here and then let this data set is like 

this, so there are suppose there are one two that seven variables I want to do factor 

analysis. So, we use Spss go to analyze then I think under dimension reduction, so go to 

analyze then go to dimension reduction then click factor and here it will be asking what 

are the variables you want to consider let you want to consider d to C H all variables. 

Then there are many other thing like descriptive that variable, you may interested 

variable description initial solution. You may be interested to know coefficient standard 

determinant k m o and Bartlett test k m o test is there which is known as that Kaiser 

Meyer o stands for Olkin probably that Oklin Kaiser Meyer Oklin test. So, that is fine 

then extraction which method you want to use we have discussed principal component 

maximum likelihood principal axis factor this two three. We have discussed there are un 

weighted generalized many things are there. Let it be principal component then scree 

plot you may be interested in covariance matrix. 

Now, what do you want to what will be your extraction criteria based on Eigen value 

Eigen value greater than 1 or fixed number of factors. So, let it be Eigen value greater 



than 1, so what will happen. Let us see then rotation you want to know I guess let there 

be varimax rotation then you go for scores, you want score yes you save as variables. If 

you want to know the vector score coefficient matrix click here and then there are several 

options how to deal the missing values, what is the display that is possible.  
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So, click now descriptive statistics mean standard deviation then correlation matrix is 

given here. 
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Now, see the correlation matrix first there are many vary many correlation coefficients 

which are greater than 0.3. Now, that Kaiser Meyer Oklin sample adequacy test based on 

that approximate chi square that degree Bartlett test of sphericity significance is 0. 
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It simply Says that these are this data set is factorable and Adequation sampling. 

Adequation test value is not rejecting null hypothesis, that the data means it can be 

captured then the commonalities. I think at this point in time, you are very much in able 

to explain what commonalities are. So, extraction and initial raw, and rescaled means 

with respect to standardized variables.  



(Refer Slide Time: 56:17) 

 

Now, total variance explained if you see here ultimately these are the can go up to 

maximum seven components, but first component percentage variability explained is 47 

percent. Second component explaining 22 percent, that too in total they are able to 

explain that 70 percent of total variability. As we have seen, we have basically selected 

that we want the Eigen value criteria of one or more using correlation matrix. 

 So, that is why these two factors we are keeping here and please remember we are using 

basically the covariance matrix in the raw data, skilled data that is what the correlation 

matrix is. See, the values are like this, but here the values this values is 2.31 and 1.24. 

So, two factor model is possible because 70 percent of variability of job stress 

component if I can explain using two factor instead of three factors, it is not bad we can 

go for that. 
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Now, scree plot will tell you that where you want to I think the three factors should be 

better because elbow is coming here. So, that means this s i not 1, but it may be more 

than 0.7 because the Juliet book I have found that it says that if we go for Eigen value of 

1 or more criteria, then what will happen ultimately you will find out that many factors to 

be excluded. So, he suggested that go for 0.7, 0.7 is better, so go for point seven so that 

mean three factors can be extracted and that will give you little better structure. Now, 

this is the component matrix your raw component versus scale component that loading 

factors is giving here and your rotated component also given first one is this. 
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This one is your original case, this is your rotated case and component transformation 

matrix using rotated factor. So, under rotated case came Bartlett test, all those things 

again it is repeated and what is more important here. I think we have not taken this one 

that the plot factors that component plot, we have not considered here, but you can 

probably do now. I am going for three factors because we found that there factor the 

better one. 

So, let us go to this extraction, I will write number of factors that is three then principal 

component, let it be then rotation let it be loading plots. Now, I am giving loading plots 

rest I am keeping as it is you come to this what is happening here your 81 percent of 

variability can be explained if you go for three factors. It is it is a better one and now 

after that I will show you the component lading plot. 
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Three components at a time plots are given, but it will better if we go for two 

components at a time that will be much better visibility will be much better. 
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So, I think in Spss it is very easy to conduct factor analysis provided, you know the 

theory behind it. Otherwise, what you will get, you will not be able to interpret properly 

confirmatory factor analysis under there for confirmatory factor analysis. There are many 

other methods of estimating the model fit for what I can say that model adequacy, what 

is the model adequacy that you want to estimate. That is possible through different 

methods different index are developed, but that those things I will be discussed in 

structural equation modeling again and which are equally equal to confirmatory factor 

analysis.  

Thank you very much. 


