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Good morning today we will discuss principal component analysis, principal component 

analysis PCA. 

(Refer Slide Time: 00:44) 

 



So, let us see the content of today’s presentation, first we will describe the basic concepts 

prevailing with principal component analysis. Then we will see that how principal 

component can be extracted from a given data set. Then we will go for sampling 

distribution of Eigen values and Eigen vectors. You will see that Eigen value, Eigen 

vector decomposition of the covariance or correlation matrix is the means for extracting 

principal component. Then followed by model adequacy test, then we will describe one 

case study. I think it requires around two hour of lecture first hour we will try to 

complete up to that extracting principal components. So, what is principal component 

analysis?  
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So, principal component analysis is a data reduction technique. Data reduction technique 

it is extensively used and developed by developed by Hotelling H in 1933. It is the data 

reduction is done with two prospective in mind, one is that lowered dimension, second 

one is orthogonality of the new dimensions. Orthogonality of the new dimensions new or 

transformed dimensions, which are basically P C S principal component. So, let us now 

go for the very simple two dimensional plot.  

For example, let our dataset is X, which basically composed of n cross two that means m 

measurements on two variables. So, like this, so this one is variable X 1 and variable X 2 

then this one X 1 1, X 2 1. So, like this X n 1, then X 1 2, X 2 2 like this, X n 2. If you 

plot the data is here suppose this axis X 1, this is X 2. Now, if you plot the data let us 



assume that the data is like this data plot looks like this, now if you compute the 

covariance matrix of X. You will be getting as we are talking about data, so we have 

collected a sample in that sense. You have to write this will be s 1 1, s 1 2, s 1 2, s 2 2. 

So, two cross two matrix, so this scattered diagram shows that there is a relationship 

between X 1 and X 2 

So, if you calculate correlation matrix between for X, what will happen? You will get 

certain correlation coefficient. This will be your correlation matrix two cross two, you 

will find out that r 1 to that will be as you. Now, that correlation coefficient varies from 

minus 1 to plus 1 and here X 2 and X 1 the relationship is positive. So, you will get X, 

what large value may be it may be almost equal to 0.9 here 0.90 getting me. So, this is 

one aspect that we have taken two dimensional or regional data X 1, X 2 their scattered 

plot looks like this. It shows there is linear relationship primary linear relationship. 

 If you go for correlation matrix you will be finding out that the relationship is strong 

enough. This is first, second issue here if I want to see the variability of X 1and 

variability of X 2 then these are s 1 1 and s 2 2, this is the variance component. Now, if 

we go for that this is sample, suppose population co variance population co variance, 

then what will happen? This will become sigma 1 1 sigma 1 2 sigma 1 2 sigma 2 2.  

Now, this population variance component for X 1 is this sigma 1 1 and for X 2 is sigma 2 

2. If we see the scattered here if we say that n is representative enough for the population 

large value. If we see the scattered here then you see that the across this X 1, this is the 

range variability range. Similarly, if see across X 2, so you will be getting another range 

that is variability X 2. 

So, you see that definitely the X 2 and X 1 variability are not same, but their substantial 

values that means if this is my diagram, this is my relationship, then definitely, s 1 1 and 

s 1 2 s 1 1 and s 2 2 for X 1and X 2 respectively, this value is high correct. Now, let us 

see that another the same diagram, let us see that you are rotating this axis X 1and X 2 

anticlockwise rotating the axis X 1 and X 2 rigid rotation keeping this origin.  

This one visit by angle theta, then what will happen you will get new direction for X 

1and X 2? Correct, if I rotate X 1 by theta then X 2 is also will be rotated by theta. Now, 

if I say in the new direction this one is z 1 and this is z 2, this one is z 1, then z 2, what 



can you say about the variability of the dataset along z 1 and z 2 getting me? So, if I 

draw one more figure along z 1 and z 2 here then... 
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Suppose, I am writing this one, basically in this, what I am doing? Now, this z 1 is this 

along theta, now I am rot I am just making it like this, so that it will be we will be able to 

see it clearly in the sense. Correct? If you see the scattered plot, now this one is z 1 and 

this one is other one is z 2 I think it is like this only correct.  

Now, if we see the variability across z 1, this is variability of z 1. Similarly, if you see 

this one across z 2 you are getting this variability across z 2. What are you getting here? 

If I plot both the figures now here. So, basically you got something like this one is X 1 

and this is X 2 and we have seen that variability of X 1 and variability of X 2. 

So, this is our original data dimensions and this is as we have rotated by theta degree 

anticlockwise. We are saying that transformed data getting me transformed data. Now, it 

is clear from this two diagram that although here from variability explain variability of X 

1 and X 2 point of view. If I see that the both are large and may be X 1 variability little 

more than X 2, if I go by this z 1 and z 2, what I am finding out? Variability across z 1 is 

much more then variability across z 2. So, what we have got then variability across z 1 is 

greater than variability across z 2. 



Second thing is that this is line second issue is here, that here in X 1and X 2 both the 

variable s are co related. That is way you are getting an ellipse by variant l ellipse 

inclined one that mean this if I see that ellipse here the major and minor axis of the 

ellipse are not parallel to X 1and X 2. It shows the dependency between X 1and X 2. 

Now, here in the transform case, what is happening? Major axis of the ellipse is across z 

1 minor is across z 2. This shows z 1 and z 2 are independent. That is what I said the 

orthogonal dimensions orthogonal dimension or orthogonality is preserved. 

 Now, can we do this is there any mathematics by, which we can we can transform the 

correlated structure data structure into uncorrelated data structures well as from 

correlating. That means in the reduced dimension, while reduced dimension if the 

variability across z 2 is much less compared to z 1, then what will happen? We can say 

that the information content across this z 2 dimension is very less, we can ignore this 

information. We can just capture the information here instatistical sense information is 

the variability variance part. So, z 1 alone is sufficient to give us the information, what is 

available in the original data set. 

If this is the case, I will go for only one dimension than this z 1 that this what this the 

reduction. So, principal component analysis we will do this not necessary for necessarily. 

For these two dimension it can be a then for p dimensions by p dimension, what we 

mean that your X data matrix is n cross p. That mean the variable you are considering X 

variable is X 1, X 2, there are p variables p can be per large, it can may be fifty. So, we 

are now converting what you are doing this X is converted to z if X is p variable case p 

cross one vector z can be p cross z also we can extract suppose z is m cross one vector  

So, m can be less the equal to p depending on the correlation structure the matrix. We 

will be using the rank of the matrix and all those things, but essentially what do you 

want? Basically, we want that m should be less than equal to p. If p is very large m 

should be as low as possible compared to p. So, that is what is done in principal 

component analysis getting me. So, principal component analysis is a data reduction 

techniques. It transform original data matrix or data set into some other dimensions of 

reduced that components and it preserves the orthogonality of the components. 

As a result, what will happen? What are the advantages? You will be getting from here 

advantages is, suppose we want to do a prediction model using multiple regression and 



my X variable, these are all I V S independent variables. If I V S are correlate then that 

ultimately leads to multi co linearity problem multi co linearity are there. So, under multi 

co linearity condition the regression model what you want to fit that y equal to function 

of X linear model.  

This model will not be a good one, because under multi co linearity it may not be 

possible to estimate the parameters. If you use to estimate, what will happen? It may be 

there may be distortion and many things will be there. There are different ways to do for 

example, is regression can be done in case of multi co linearity problem, but my question 

is, if I can make them independent, then this I V S be X can be transformed to this z 

scale. Like z here these are truly independent, now you can fit a model using f z getting 

me. 

These are the advantage, now what is the principal? Basically, how this things that data 

reduction here or the orthogonal reduction? That is dimension orthogonality of 

dimension is maintained and data is reduced to lower dimension ,what is the method will 

go by that the two by two matrix case for s? So, the same two dimensional case. 
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So, if I see this, so you have seen that we got a ellipse like this in the original data set X 

1and X 2. Correct? Now, let us think that there is one point m this for example, let this 

coordinate is X 1 and X 2, X 1 for X 1 variable X 2 for X 2 variable. Now, what you 



have done? When you are converting to z that means z 1 and z 2 this is z 1 and this one 

is z 2.  

So, I am writing this point little high above for example, let it be here this point this is 

the point. So, you have rotated X 1 by theta anticlockwise and this also theta I want to 

know first you say, what is this point? This value here, if m is X 1, X 2 then this value is 

X 1 0 for example, let this is m one point on the X 1axis similarly, if you project this m 

that projection on this point projection on X 2, what will get? You may get a point m 2, 

what is zero X 2? This coordinate geometry. 

Now, what we want we want to find out, what is the projection of this m 1 on z 1 as well 

as z 2 getting me? So, you just let me draw this is axis, now clearly what you want here 

this is your theta, our aim is we want to find out this is this one X 1 0. I want to find 

projection of m 1 on X 2 at z 2 and z 1. So, what you do? You will find draw a 

perpendicular here from this point you want to draw a perpendicular. So, from this point 

draw a perpendicular here similarly, you want also from this point you want to draw a 

perpendicular line here and perpendicular line here, what you are doing? Now, that X 

1component is projected on z 1 as well as z 2, X 2 component is projected on z 1 and z 2.  

Now, this angle is theta, this is theta, if this one is theta and your this also theta, so this 

will be theta. So, ultimately, what you will find out? That the projection of m one on X 1 

will be x 1 cos theta. So, if I write z 1 we have there are two projection one is from X 

one is theta. Similarly, there will be another projection that is a plus X 2 sin theta X 1 cos 

theta plus x 2 sin theta. So, similarly in the z 2 axis, what will happen? That minus x 1 

sin theta plus x 2 cos theta, simple trigonometry. So, you will be able to find out only just 

know the theta once you know the theta you know the triangle and project it.  

So, then this one if I write in matrix term I can write like this z 1, z 2 equal to cos theta 

sin theta minus sin theta cos theta into X 1, X 2 we can write like this. Because, z 1 equal 

to cos theta x1 x 1 cos theta plus X 2 sin theta z 2 equal to minus x 1 sin theta plus x 2 

cos theta this equation you are getting. So, then I can write this one equal to z equal to it 

transpose X where z is nothing but this one z 1 z 2 and a transpose this one. We are 

saying a transpose this is a transpose and this is your X and this is your z. So, if I do like 

this then a transpose equal to our cos theta sin theta minus sin theta cos theta.  



So, then what is the e a matrix transpose of transpose this will be cos theta minus sin 

theta sin theta cos theta this row transformation. So, instead of p equal to two if there is p 

equal to p? What will happen? You will get z 1 z 2 z p that will be your z and your this 

equal to A transpose. So, A transpose I am now writing that like this our A is a 1 here 

this is nothing but this column and a 2 is this column. So, if there are p variable there are 

two variable, so that why you are getting this one is equivalent to a 1 1 this is equivalent 

to what we are saying a 1 1, X 1 plus a 1 2, X 2.  

So, this is a 1 2 and this one is a 2 1 and a 2 2 you can do this in theta cos theta sin theta 

we have written here in place of cos theta sin theta I am writing that this is a 1 1, a 1 2, a 

2 1, a 2 2 like this. If there is p variable case through, you can write down like this a 1 1 , 

a 2 1 a this is transpose A transpose s a 1 on a 1 2 like this a 1 p a 2 one a 2 2 like a 2 p. 

Similarly, a p 1 a p 2 like a p p, this is your p cross 1, this one is your p cross p and then 

your X 1, X 2, X p, that means this two dimension this case. Now, we are making like 

this and we are writing in terms of s. So, this if I write further I can write this one is a 

transpose X, what we have written earlier also? Then what do you want to see that how 

this that we say that it will be orthogonal transformation. So, how this orthogonality is 

maintained here with this two dimension case we want to see. 
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What we have written for the two dimension case A equal to our cos theta sin theta 

minus sin theta cos theta, that we are saying we can write like this a 1 and a 2 getting me. 



Now, then what is you a 1 a 1 is cos theta sin theta. Now, if I want to know what is a 1 

transpose a 1? What will be the value here? cos theta sin theta into cos theta sin theta will 

be cos square theta plus sin square theta will be one getting me. Similarly, you will be 

getting a 2 transpose a 2 equal to one. Correct? Now, then if I want to know that what is 

A T transpose a that will be cos theta sin theta minus sin theta cos theta into a is cos theta 

sin theta minus sin theta cos theta 2 cross 2 cross 2 cos cos sin sine plus cos square theta 

plus sin square theta that will be 1.  

Now, then cos minus sinesine minus cos this will be 0,1. So, this will also be if you do a 

a transpose you will get the same thing. Correct? See this is s symmetric matrix in such a 

way that if you do like this A inverse, A is also be getting same thing even this is identity 

k matrix. That means what we are getting A inverse A is I when a inverse A is I this is 

what is orthogonal matrix that of diagonal elements are 0. So, you are getting orthogonal 

transformation and this transformation matrix, this is orthogonal transformation matrix 

A. 
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Now, what we will do, I will show you one slide here you see that there are p variable for 

X and you can extract p principal components z 1 z 2 to z p and their equation will be 

like this. What we have seen then what I mean to say if you just see this our earlier 

development that I think, I told you here. 
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So, like this you will be getting, so what will be getting? z 1 equal to a 1 1, X 1 plus a 1 2 

X 2 plus a 1 3 X 3. 
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Z 1 equal to a 1 transpose X, which is a 1 1 X 1 a 1 2 X 2 dot dot a 1 p X p. Similarly, z 

2 a 2 transpose a X 2 1 X 1 A 2 2 X 2 like a 2 p X p. So, if you write down here z k or z j 

you write let it be z j then a j transpose X a j 1 X 1a j 2 X 2 dot dot a j p X p. So, 

following if you go up to the last principal component that may be possible to get that is 

f p transpose a X, which is a p 1 X 1a p two X 2 like a p p X p.  



We said that we want orthogonal transformation, so when you are reducing the 

dimension the principal components are, we want this type of a trans a j transpose a 

equal to 1. That is one thing second one, what do you want? We want that when we are 

extracting the principal component z 1, which is the first principal component the 

variability in z 1 must be the maximum must be the maximum.  

What we have discussed earlier? In this explanation we say we want the first principal 

component in such a manner that, it will explain the maximum variance possible. Second 

principal component will explain the next maximum variance followed. Similarly, third 

one like this with this is the case, then I can say here variance of z 1 greater than equal to 

variance of z 2 greater than equal to variance of z p. So, what we will do then? We will, 

just one minute, so I have shown you this thing and that, this is possible. Now, we want 

to find out what will be the principal components given a data matrix X? How to extract 

the components? So, here before going to this extraction part I have to tell little bit of 

that we are saying that. 
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In general, we are saying z j is a j transpose X were z j is the jth principal component. 

This is jth p c and this a j and X, what are those a j and a x? You will be X you know 

what is this a j, we will be defining later on. It is if you see the equation and similar to 

regression coefficients a 1 1 X 1 plus a 1 2 X 2 plus a 1 p X plus. Similar, to regression 

coefficients, but it is not. 



So, now I want to know I say that variance of z j you require to compute, because 

variance of z 1 greater than variance of z 2 like this, what will be the variance of z j? It 

will be variance of a j transpose X. Then it will be a j is the constant here, so a j 

transpose variance of X a j. As we know this is a vector basically a j is a vector later on 

you will be you know that a j 1 a j 1 to a j p that is a vector. Now, what is the variance of 

X, x is what is the variance of X means, that will be the covariance of X. So, covariance 

of X will be sigma you have seen earlier in different class sigma 1 to sigma 1 p sigma 1 

to sigma 2 sigma 2 p that is sigma 1 p sigma 2 p sigma p p. 

So, that means this will be a j transpose sigma a j then what will be the expected value of 

z j expected value of z j will be expected values of a j transpose X, which is a j transpose 

a j transpose expected value of X, which is a j transpose mu. Because, we said that X is p 

variable vector and it is it has p mean vector mu 1 to mu p. Correct? So, that means 

essentially that a j transpose X, which is something, which is having a j transpose mu a j 

transpose sigma a j that is the mean and variance part. So, if there is normally distributed 

then you will put normal n, so a j transpose is one cross p.  

Now, what will be your mu part? Suppose, this one if you 1 cross p into p cross 1. So, 

one into one into one and this one also will be one into p into p 1 into p tha is one into 1. 

So, this is a j transpose X this one will give you a univariate case this is linear 

transformation of variable X all the principal components are linear transformation, that 

a j, a j transpose X that is the linear transformation. Now, if you do not get the values of 

sigma capital sigma as well as the mu, because these are population these are population 

parameter that is mu and sigma. 

If you know mu and sigma and then giving a data matrix you go for this type of 

extraction of z j. Then this will be known as population PCA getting me, what I mean to 

say if you know mu and sigma of the population that X variable case. Then you are 

doing population principal component analysis, but it is seldom known you will not get 

this two values. So, what is the then the rescue is you will use X bar as estimate of mu 

and s as estimate of sigma. So, when we use s actually here, we will be we will be 

playing with the covariance matrix. 



So, if you use s capital S, which is the covariance sample covariance matrix then your 

principal component analysis will be known as sample principal component analyse. So, 

we will be writing it as sample PCA and essentially population PCA is not possible.  
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So, we will go for sample PCA, because when we are talking about applied principal 

component analysis, then we have to rely on the data and will go by sample PCA. 
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So, next we will discuss sample PCA that means how we will extract all those thing. 

When we will use sample PCA. Then your extracted value of z j will be expected value 



of a j transpose X. So, this will be a j transpose expected value of X, which will be a j 

transpose X bar from sample point of view. Similarly, your variance of z j this will be 

your variance of a j transpose X, which will be nothing but you r a j transpose covariance 

of x a j. This is a j transpose, now covariance of s will be replace by capital S a j. 

Correct? If I say that this can be normally distributed then a j x it is normally distributed 

with a j transpose X bar a j transpose s a j. 
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Now, I will explain you when we extract P C? What are the principals? We follow 

getting me, we will we will discuss the principal. Now, let us see the slide each p c is a 

linear combination of X 1 linear combination of a X, if p cos one variable vector. That is 

a j transpose X you have seen this one already first p c is a 1 transpose X subjected to a 1 

transpose a 1 equal to 1. That also you have describes that maximises variability of this 

variance of a 1 transpose X. Second pc is a 2 transpose X that maximizes variability of a 

2 transpose X and subjected to a 2 transpose a 2 equal to 1. Covariance of a 1 transpose 

X a 2 transpose X equal to 0, keep in mind this one, what is happening. 
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We are saying first component you are extracting that is our z 1 is the first component, 

which is a 1 transpose X you will extract in such a manner that the variability of z 1 will 

be the maximum. Also you a 1 transpose a 1 equal to one that is the normalisation case. 

So, I have a data set, so and in this suppose this is my total variability portion. So, z 1 

will extract as max as possible by z 1. So, let z 1 variability extracted is this much then I 

am coming to the second p c, which is my a 2 transpose a X here. What happen the 

remaining variance? I want to extract maximum of the remaining variance. So, variance 

of z 2, that is the maximum of the remaining. 

So, let I am able to extract this one z 2 see, ultimately if this is my total variability z 1 

and z 2 has already may be around 70 percent is extracted by the two components. There 

are p components this is also here a 2 transpose a 2 equal to one and covariance of a 1 X 

a 2 X this equal to 0. Because, orthogonal component now in this manner if you go for z 

j then you will write a j transpose X. Here, you will definitely maximise the remaining 

variance already j minus 1 components are extracted the remaining maximise this one, 

the remaining variance. Here, also you will write a j transpose a j this equal to 1 and 

covariance of a j X a k X this equal to 0 for k less than j. Why k less then j? What I am 

saying you are means k up to k can be 1 to j minus 1.  

So, when you are extracting this, please keep in mind this is the principals what I am 

saying that when you are extracting the first component that basically, takes care of the 



maximum variance of the data set subject to this normalization. Then a 2, a x, z 2 second 

principal component goes for the second max of variability of the remaining variance 

and subject to this as well as covariance component between the first two. When you go 

for the third, there also you will you will maximize the variability of that component 

subject to the remaining variability. You also make a normalize it that a three transpose a 

three equal to one and covariance between a 3, a 1 as well as a 3, a 2. That X is common 

that will be 0. 
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So, in the same manner you will extract. So, then essentially what we are doing now? 

Actually, if I go by the general component that is z j, this is my a j transpose X we are we 

want to maximize the variability of this, which is our a j transpose s a j. Now, I am using 

sample covariance matrix and subject to what we are saying that a j transpose a j this 

equal to 1. Correct? So, we have two things first one, we want to maximize this second 

we have this concept. So, this second one I can write like this a j transpose a j minus 1 

equal to 0.  

As we want to maximize this with respect to this condition, so what we can do we can 

create a function. Suppose, this function is l, which is a j transpose s a j minus lambda 

into a j transpose a j minus 1. Correct? So, we are using a function this is the l lambda is 

the Lagrange multiplier lambda is Langrage multiplier. So, you know that this is the 

general way of maximisation process using langrage multiplier. So, what you require to 



do now? You require to find out the a j value in such a manner that this function will be 

maximized. That means what I want dell a by dell a j, that is what I want getting me, so 

this you want to put it 0 provided dell 2 l by dell a j that will be that matrix. You will also 

get this should be that maximisation that positive definite and negative definite case is 

there that condition must satisfy. 

So, this ultimately results into this equation it will be like this s minus lambda I into a j 

equal to 0. See this is if you take derivative with respect to a j it will be 2 s a j. If you 

take derivate with respect to a j it will be 2 lambda a j this derivative. So, ultimately it 

will be 2 s a j minus 2 lambda a j that equal to 0. So, 2 will be cancelled out that 0 is 

there, so s minus lambda, but s is a matrix lambda is scalar this into a j equal to 0.  

So, that is the equation, now s is your p cross p matrix. Because, p variables are there 

lambda is a scalar it all depends on that what will be there number of lambda, but I 

definitely p cross p matrix. Then this equation is a famous equation in matrix algebra, 

anyways you will find out that set of linear equations case suppose and more famous one 

is this one, suppose I want to know the lambda values, then what you require to do? You 

have to find out the characteristics equation this equal to 0. 
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So, determinant of this equal to s minus lambda I equal to 0 determinant of this equal to 

0. This is a characteristics equation getting me, so if s is p cross p then this equation has 

p roots that means you will be getting lambda 1 with the condition greater then equal to 



lambda 2, like this lambda p. So, let us see now some more slide here I said that this will 

be the that p the order polynomial is there p root you are getting. You have to this is the 

if you know lambda, basically from this equation you will be able to find out lambda 

values. Now, take 1 lambda put into this equation and then you find out the a values. I 

will show you one data set. 

 Now, this is the dataset what is the profit and loss? For example we have started with 

and if you of you plot the scattered, what you are getting? You are getting that it is 

almost linear relationship. So, that means one here data reduction is very much possible, 

so we tried with two variable case and what we found out that these are the things. So, 

first is the covariance matrix. Covariance matrix is s, so with this example s is 1.15, 5.76 

then your 5.76, 29.54.  

Now, what we want we want s minus lambda I determinant equal to 0. So, your I will be 

2 by 1001 I is identity matrix, so if I do like this minus lambda I. So, that means instead 

of lambda I am writing 1001this total determinant if I write and if I put into 0, then what 

is the resultant? This one 1.15 minus lambda 5.76 then 5.76, 29.54 minus lambda this 

equal to 0, determinant of this equal to 0. 
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So, ultimately you will be finding out 1.15 minus lambda into 29.54 minus lambda minus 

5.76 square equal to 0. It will be it is a quadratic equation of lambda because our s is two 

cross two. So, there will be 2 roots, so lambda 1 and lambda 2, so that roots will be the 



two roots of two roots of lambda. Let it be lambda 1 and lambda 2 using this equation 

you can find out. 
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So, what I means to say the resultant equation is 1.15 into 29.554 minus 1.15 lambda 

minus 29.54 lambda plus lambda square minus 5.76 square equal to 0. So, lambda square 

minus you add this 30 I think 30.this lambda, this one then this two is to be added that 

you will be getting some value. This is the sum positive value you will be getting if I 

consider this as c then you lambda is minus b minus b is 30.69 minus b plus minus root 

over b square, b square minus four a c, a is 1, c by 2 into this will give you the Eigen 

values two values lambda one will be your 30.66 and lambda 2 will be 0.03. Correct? 

So, you are getting your lambda 1 and lambda 2, then what you require to find out you 

require to find out the a values. So, what you will do? Now, we know s minus lambda I h 

j that will be equal to 0, so here will be using lambda j. Now, so as lambda 1 equal to 

30.66, so you put s is 1.15, 5.76 then 5.76, 29.54. This minus lambda is your 30.66 and 

into this matrix 1001. This matrix this into a 1 equal to 0, now you are a 1 will be what a 

1 1, a 1 2, because there are two variable. 
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So, I can write a 1 1, a 1 2, a 1 1, a 1 2 that will be 0 this value will be 0, but what will 

happen? Ultimately, you will be getting two equation and you will not get unique 

solution. You will get infinite solution under this conditions, because this is a equation is 

0 and that means there will be infinite number of this a 1. So, in order to restrict that 

what we will do? a 1 transpose a 1 equal to 1 so if a 1 transpose a 1 equal to 1. Then 

what will happen? a 1 1, a 1 2, a 1 1, a 1 2 that is one. So, a 1 1 square plus a 1 2 square 

equal to 1. So, whatever equation you are getting here that earlier equation you put a 1 1 

equal to from this equation. What is the value you are getting? You will be getting 

positive and negative values. 
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So, you put this one once you put into this equation or a 1 1, now a 1 2 will be replaced 

by a 1 1 from this first equation a 1 is already there. Our a 1 relation you will be getting 

from here from this you will be getting, because this is two by two this into this plus this 

into this. So, it is a two variable equation will be like this some value into a 1 1 plus 

some value into a 1 2 that will be 0 like this. So, similarly now you are getting one 

relation from here suppose this is your p and this is your q. Then you are getting a 1 1 

equal to q by p minus a 1 2. Here, you put instead of a 1 1 you put minus q by p square a 

1 to plus a 1 2 square plus a 1 to square plus a 1 to square equal to 1. You will be getting 

a 1 to and putting here you will be getting a 1 1.  
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Similarly, a 2 1 and a 2 2 you will be getting. So, the final one this is the that why this is 

your a 1 1, a 1 2 this is a 2 1, a 2 2. You are getting third principal component z 1 and z 

2, this is the manner of extraction of principal component. 


